Estimación de la capacidad de retención de agua de suelos volcánicos en función de variables de fácil determinación a campo
Autor: | La Manna, Ludmila, Tarabini, Manuela, Gomez, Federico, Noli, Pedro Agustín, Vogel, Braian, Buduba, Carlos Guillermo |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Simulation Models
Ceniza Soil Water Retention Agriculture (General) Región Patagónica Textura Suelo Volcánico Capacidad de campo Plant culture Permanent Wilting Point Ashes S1-972 SB1-1110 Field capacity Retención de Agua por el Suelo Volcanic Soils Punto de marchitez permanente Texture Andisol Modelos de Simulación |
Zdroj: | Ciencia del Suelo, Vol 36, Iss 1, Pp 23-29 (2018) Ciencia del Suelo (Argentina) 36 (1) : 23-29. (2018) INTA Digital (INTA) Instituto Nacional de Tecnología Agropecuaria instacron:INTA Ciencia del suelo, Volume: 36, Issue: 1, Pages: 23-29, Published: JUL 2018 |
ISSN: | 1850-2067 |
Popis: | Los suelos de la región andino Patagónica se desarrollan fundamentalmente a partir de cenizas y arenas volcánicas, lo que les otorga propiedades distintivas. el objetivo del presente trabajo fue generar modelos que permitan estimar las constantes hídri- cas (capacidad de campo (cc) y punto de marchitez permanente (PmP)) en suelos volcánicos, en función de variables de fácil determinación a campo: clase textural estimada al tacto y test de fluoruro de sodio (naF), el cual permite estimar la presencia de aluminosilicatos no cristalinos. Los datos fueron analizados mediante modelos de regresión cuadrática, considerando la clase textural como variable ordinal independiente (x) y las constantes hídricas como variables dependientes. Se obtuvieron los siguientes modelos cuadráticos de regresión: Para suelos con reacción negativa al naF (i.e., sin aluminosilicatos no cristalinos) (n = 132); cc = 47,18 – 4,09 * x + 0,13 * x2 (r2 = 0,52); PmP = 30,46 – 3,52 * x + 0,13 * x2 (r2 = 0,53); Para suelos con reacción positiva al naF (i.e., con aluminosilicatos no cristalinos) (n = 211); cc = 35,50 + 1,26 * x – 0,23 * x2 (r2 = 0,25); PmP = 21,53 + 0,29 * x – 0,13 * x2 (r2 = 0,37); siendo x el código ordinal de clase textural: 1 = arcilloso; 2 = arcillo limoso; 3 = franco arcillo limoso; 4 = arcillo arenoso; 5 = franco arcilloso; 6 = limoso; 7 = franco limoso; 8 = franco arcillo arenoso; 9 = franco; 10 = franco arenoso; 11 = areno franco; 12 = arenoso. Los modelos desarrollados presentaron un ajuste estadísticamente significativo, y tienen la practicidad de sólo necesitar datos de campo, fácilmente obtenibles. Soils in Patagonian Andean Region are developed mainly from volcanic ashes and they have distinct properties. We aimed to develop models in order to estimate Field capacity (FC) and Permanent Wilting Point (PWP) in volcanic soils, using easily measured variables: soil textural class and Fieldes test, which allows detecting non-crystalline aluminosilicates. Data were analyzed with second order regression models, considering textural class as ordinal independent variable (x) and FC and PWP as dependent variables. The following regression models were developed: For soils with negative Fieldes test (i.e., without non-crystalline aluminosilicates) (N = 132): FC = 47,18 – 4,09 * x + 0,13 * x2 (R2 = 0,52) PWP = 30,46 – 3,52 * x + 0,13 * x2 (R2 = 0,53) For soils with positive Fieldes test (i.e., with non-crystalline aluminosilicates) (N = 211): FC = 35,50 + 1,26 * x – 0,23 * x2 (R2 = 0,25) PWP = 21,53 + 0,29 * x - 0,13 * x2 (R2 = 0,37) x = code for textural class: 1 = clay; 2 = silty clay; 3 = silty clay loam; 4 = sandy clay; 5 = clay loam; 6 = silt; 7 = silt loam; 8 = sandy clay loam; 9 = loam; 10 = sandy loam; 11 = loamy sand; 12 = sand. These models showed significant fit, and are a useful tool based on readily available field data. EEA Esquel Fil: La Manna, Ludmila Andrea. Universidad Nacional de la Patagonia San Juan Bosco. Facultad de Ingeniería. Centro de Estudios Ambientales Integrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Tarabini, Manuela. Universidad Nacional de la Patagonia San Juan Bosco. Facultad de Ingeniería. Centro de Estudios Ambientales Integrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Gomez, Federico Antonio. Universidad Nacional de la Patagonia San Juan Bosco. Facultad de Ingeniería. Centro de Estudios Ambientales Integrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Esquel; Argentina Fil: Noli, Pedro Agustín. Universidad Nacional de la Patagonia San Juan Bosco. Facultad de Ingeniería. Centro de Estudios Ambientales Integrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Vogel, Braian. Universidad Nacional de la Patagonia San Juan Bosco. Facultad de Ingeniería. Centro de Estudios Ambientales Integrados; Argentina Fil: Buduba, Carlos Guillermo. Universidad Nacional de la Patagonia San Juan Bosco. Facultad de Ingeniería. Centro de Estudios Ambientales Integrados; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Esquel; Argentina |
Databáze: | OpenAIRE |
Externí odkaz: |