The transmembrane domains of HCV envelope glycoproteins: residues involved in E1E2 heterodimerization and involvement of these domains in virus entry

Autor: Ciczora, Yann, Callens, Nathalie, Penin, François, Pécheur, Eve, Dubuisson, Jean
Přispěvatelé: Institut de biologie de Lille - IBL (IBLI), Université de Lille, Sciences et Technologies-Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Université de Lille, Droit et Santé-Centre National de la Recherche Scientifique (CNRS), Institut de biologie et chimie des protéines [Lyon] (IBCP), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), This work was supported by the Agence Nationale de Recherche sur le Sida et les Hépatites Virales (ANRS). J.D. is an international scholar of the Howard Hughes Medical Institute., We thank Yves Rouillé for critical reading of the manuscript and Jennifer Molle, Sophie Desnoulez, André Pillez, and Sophana Ung for their technical assistance. We are grateful to J. McKeating, B. Bartosch, and F. L. Cosset for providing us with reagents. Fluorescence spectroscopy was performed by EIP on the platform 'Physico-Chemical Analysis of Proteins' (PAP) at the Institut de Biologie et Chimie des Protéines (IBCP).
Jazyk: angličtina
Rok vydání: 2007
Předmět:
Zdroj: Journal of Virology
Journal of Virology, American Society for Microbiology, 2007, 81 (5), pp.2372-2381. ⟨10.1128/JVI.02198-06⟩
ISSN: 0022-538X
1098-5514
Popis: International audience; The transmembrane (TM) domains of hepatitis C virus (HCV) envelope glycoproteins E1 and E2 have been shown to play multiple roles during the biogenesis of the E1E2 heterodimer. By using alanine scanning insertion mutagenesis within the TM domains of HCV envelope glycoproteins, we have previously shown that the central regions of these domains as well as the N-terminal part of the TM domain of E1 are involved in heterodimerization. Here, we used a tryptophan replacement scan of these regions to identify individual residues that participate in those interactions. Our mutagenesis study identified at least four residues involved in heterodimerization: Gly 354, Gly 358, Lys 370, and Asp 728. Interestingly, Gly 354 and Gly 358 belong to a GXXXG oligomerization motif. Our tryptophan mutants were also used to generate retrovirus-based, HCV-pseudotyped particles (HCVpp) in order to analyze the effects of these mutations on virus entry. Surprisingly, two mutants consistently displayed higher infectivity compared to that of the wild type. In contrast, HCVpp infectivity was strongly affected for many mutants, despite normal E1E2 heterodimerization and normal levels of incorporation of HCV glycoproteins into HCVpp. The characterization of some of these HCVpp mutants in the recently developed in vitro fusion assay using fluorescent-labeled liposomes indicated that mutations reducing HCVpp infectivity without altering E1E2 heterodimerization affected the fusion properties of HCV envelope glycoproteins. In conclusion, this mutational analysis identified residues involved in E1E2 heterodimerization and revealed that the TM domains of HCV envelope glycoproteins play a major role in the fusion properties of these proteins.
Databáze: OpenAIRE