Evaluation of the constitutive model Generalized Bounding Surface Model in the simulation of the behavior of cohesive soils
Autor: | Molina Rincón, Tania Paola |
---|---|
Přispěvatelé: | Nieto Leal, Andrés |
Jazyk: | Spanish; Castilian |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Anandarajah, A. and Dafalias, Y. F. (1986). Bounding surface plasticity iii: aplication to anisotropic cohesive soils. Journal of Engineering Mechanics, ASCE, 112(12):1292–1318. Atkinson, J. (1982). The mechanics of soil an introduction to critical state. MacGraw Hill Chin, L. and Liu, C. (1997). Volumetric and undrained behaviors of taipei silty clay. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 9(4):665–678. Dafalias, Y. and Popov, E. (1975). A model of nonlinearly hardening materials for complex loading. Acta Mechanica, 21(3):173–192. Dafalias, Y. F. (1986). An anisotropic critical state soil plasticity model. Mechanics research communications, 13(6). Dafalias, Y. F. and Herrmann, L. R. (1980). A bounding burface soil plasticity model. In Pande, G. N. and Zienkiewicz, O. C., editors, Proceedings of the International Symposium on Soils Under Cyclic and Transient Loading, Swansea, UK, Balkema, Rotterdam Dafalias, Y. F. and Herrmann, L. R. (1982a). Bounding surface formulation of soil plasticity. In Pande, G. N. and Zienkiewicz, O. C., editors, Soil Mechanics-Transient and Cyclic Loads, page 253–282, Chichester, UK. J. Wiley and Sons, Inc. Dafalias, Y. F. and Herrmann, L. R. (1982b). A generalized bounding surface constitutive model for clays. In Yong, R. N. and Selig, E. T., editors, Application of Plasticity and Generalized Stress-Strain in Geotechnical Engineering, pages 78–95, Hollywood FL, New York. ASCE American Society of Civil Engineers. Dafalias, Y. F. and Herrmann, L. R. (1986). Bounding surface plasticity ii: Application to isotropic cohesive soils. Journal of Engineering Mechanics, 112(12):1263–1291. Dafalias, Y. F., Herrmann, L. R., and DeNatale, J. S. (1982). The bounding surface plasticity model for isotropic cohesive soils and its application at the grenoble workshop. In Gudehus, G., Darve, F., and Vardoulakis, I., editors, Results of the International Workshop on Constitutive Relations for Soils, page 273–287, Grenoble, France. Fayad, P. H. (1986). Aspectsof the volumetric and undrained behavior of boston blue clay. Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA, U.S.A. Gens, A. (1982). Stress–strain and strenght characteristics of a low plasticity clay. PhD thesis, Imperial College, London, U.K. Helwany, S. (2007). Applied Soil Mechanics: with ABAQUS Applications. John Wiley & Sons. Jiang, J., Ling, H. I., and Kaliakin, V. N. (2012). An associative and non-associative anisotropic bounding surface model for clay. Journal of Applied Mechanics, 79(3):1–10. Jiang, J., Ling, H. I., Kaliakin, V. N., Zeng, X., and Hung, C. (2017). Evaluation of an anisotropic elastoplastic–viscoplastic bounding surface model for clays. Acta Geotechnica, 12:335–348. Kaliakin, V. N. (1992). Calbr8, a simple computer program for assessing the idiosyncrasies of various constitutive models used to characterize soils. Report no, University of Delaware, Newark, DE, U.S.A. Kaliakin, V. N. (2014). Details pertaining to bounding surface models for cohesive soils. Report no, University of Delaware, Newark, DE, U.S.A. Kaliakin, V. N. and Dafalias, Y. F. (1989). Simplifications to the bounding surface model for cohesive soils. International journal for numerical and analytical methods in geomechanics, 13:91–100. Kaliakin, V. N. and Nieto-Leal, A. (2013). Towards a generalized bunding surface model for cohesive soils. Poromechanics V Proceedings. Ling, H. I., You, D., Kailakin, V. N., and Themelesis, N. J. (2002). Anisotropic elastoplastic bounding surface model for cohesive soils. Journal of Engineering Mechanics, 128(7):748– 758. Nieto-Leal, A. (2007). Modelaci´on del comportamiento del suelo utilizando el modelo constitutivo mit s1. Master’s thesis, Universidad de los Andes, Bogot´a, Colombia. Nieto-Leal, A. (2016). Generalized bounding surface model for cohesive soils: a novel formulation for monotonic and cyclic loading. PhD thesis, University of Delaware, Newark, DE, U.S.A. Nieto-Leal, A. and Kaliakin, V. N. (2014). Improved shape hardening function for bounding surface model for cohesive soils. Journal of Rock Mechanics and Geotechnical Engineering, 6(4):328–337. Nieto-Leal, A., Kaliakin, V. N., and Molina R., T. P. (2017). Performance of the generalized bounding surface model: Simulation of cohesive soils subjected to monotonic loading. In Geocongress 2018, Florida, Orlando, U.S.A. ASCE American Society of Civil Engineers. Parry, R. H. G. and Nadarajah, V. (1973). Observations on laboratory prepared, lightly averconsolidated specimens of kaolin. G´otecnique, 24(3):345–358. Roscoe, K. and Burland, J. (1968). On the generalized stress-strain behavior of wet clays. Engineering plasticity, pages 535–608. Schofield, A. and Wroth, C. (1968). Critical state soil mechanics. European civil engineering series. McGraw-Hill. Sheng, D., Sloan, S., and Yu, H. (2000). Aspects of finite element implementation of critical state models. Computational Mechanics, 26:185–196. Sheu, W.-Y. (1984). Modeling of stress–strain–strength behavior of a clay under cyclic loading. PhD thesis, University of Colorado. Stipho, A. S. A. (1978). Experimental and theoretical investigation of the behavior of anisotropically consolidated kaolin. PhD thesis, University College, Cardiff, U.K. Repositorio UMNG Universidad Militar Nueva Granada instacron:Universidad Militar Nueva Granada |
Popis: | Conociendo las propiedades mecánicas y el comportamiento esfuerzo - deformación del suelo, se pueden hacer diseños más precisos donde se utilicen modelos constitutivos robustos, los cuales predicen de una mejor manera el comportamiento del suelo para caracterizar el terreno en donde se pretendan construir futuros proyectos y garantizar de esta manera la estabilidad que tendrá la obra civil. El modelo Generalized Bounding Surface (GBSM) permite predecir computacionalmente el comportamiento de suelos cohesivos tanto isotrópica como anisotrópicamente consolidados, usando la regla de flujo sociada. Es por esto que se busca simular una seria de suelos que permita validar el modelo, surgiendo como interrogante: ¿Cuál es el desempeño del modelo constitutivo Generalized Bounding Surface Model (GBSM) en la simulación del comportamiento de suelos cohesivos bajo cargas monotónicas? La evaluación de este modelo constitutivo se hizo comprobando la versión isotrópica y anisotrópica con la regla de flujo asociada, en cinco diferentes tipos de suelos. Recopilando datos de las distintas tesis, artículos y fuentes de información que tengan ensayos experimentales, así mismo digitalizar las gráficas obtenidas, y de esta manera se completan los datos base para el uso del programa Calbr8, que permite calibrar los parámetros necesarios para ejecutar las representaciones correspondientes. Los datos obtenidos se procesaron e interpretaron comparando las simulaciones hechas con respecto a los resultados experimentales. Como resultados finales una vez se culminan las simulaciones en el programa Calbr8 y aplicando el GBSM, se obtuvieron las gráficas de los estados de esfuerzos, deformación axial y presión de poros, para ser comparadas con respecto a las trayectorias experimentales.Comprobando que el modelo GBSM está programado para pronosticar el comportamiento mecánico de cada suelo, implementando la teoría de la superficie limite, según sus parámetrosy la calibración de las variables propias de este, los resultados comprueban la aplicación optima de este modelo en la geotecnia. Knowing the mechanical properties and the stress - deformation behavior of the soil, more precise designs can be made where robust constitutive models are used, which better predict the behavior of the soil to characterize the land where future projects are planned and guarantee in this way, the stability that civil works will have. The Generalized Bounding Surface (GBSM) model allows to computationally predict the behavior of cohesive soils, both isotropic and anisotropically consolidated, using the rule of sociated flow. That is why we are looking to simulate a series of soils that validate the model, emerging as a question: What is the performance of the Generalized Bounding Surface Model (GBSM) in the simulation of the behavior of cohesive soils under monotonic loads? The evaluation of this constitutive model was made by checking the isotropic and anisotropic version with the associated flow rule, in five different soil types. Collecting data from the different theses, articles and information sources that have experimental tests, likewise digitize the obtained graphs, and in this way the base data for the use of the Calbr8 program is completed, which allows to calibrate the necessary parameters to execute the representations corresponding. The data obtained were processed and interpreted by comparing the simulations made with respect to the experimental results. As final results once the simulations in the Calbr8 program are completed and applying the GBSM, the graphs of the states of stress, axial deformation and pore pressure were obtained to be compared with respect to the experimental trajectories. Checking that the GBSM model is programmed to predict the mechanical behavior of each soil, implementing the theory of the surface limit, according to its parameters and the calibration of the variables of this, the results prove the optimal application of this model in geotechnics. |
Databáze: | OpenAIRE |
Externí odkaz: |