Dynamic radial deformations of nonlinear elastic structures. On the influence of constitutive modeling

Autor: Aranda Iglesias, Francisco Damián
Přispěvatelé: Rodríguez-Martínez, José A., Vadillo, Guadalupe, Universidad Carlos III de Madrid. Departamento de Mecánica de Medios Continuos y Teoría de Estructuras, UC3M. Departamento de Mecánica de Medios Continuos y Teoría de Estructuras
Rok vydání: 2017
Předmět:
Zdroj: e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid
instname
Popis: Mención Internacional en el título de doctor The objective of this dissertation is to develop a comprehensive theoretical approach to the role of the constitutive model on the dynamic radial deformations of nonlinear elastic structures. Using 1D and 2D models, cylindrical and spherical thick-walled shells are considered. These geometries are representative of man-made and natural structures that can be found in a wide variety of engineering applications and biological systems. Lead-rubber bearings, vibration isolators, peristaltic pumps, rubber bushings, saccular aneurysms or arteries are examples of nonlinear elastic structures with spherical and cylindrical geometries that are constantly subjected to all kinds of vibrational and dynamic loads. The research, which starts by considering isotropic, incompressible and rate independent constitutive models, is based on the systematic incorporation of compressibility, viscosity and anisotropy in the description of the mechanical response of the material. We investigate free and forced vibrations using different initial and boundary conditions: (1) ab initio elastic stored and kinetic energies, (2) constant radial pressures, (3) linearly time dependent radial pressures and (4) harmonic time dependent radial pressures. While the isotropic and incompressible 1D elastic structures subjected to constant pressure admit an analytical closed-form solution, all the other cases need to be solved numerically. To this end, we have developed in this work a number of specific numerical schemes. The overall outcome of this dissertation is to make it plain that the constitutive model used to describe the mechanical behavior of thick-walled shells plays a fundamental role in the nonlinear dynamics of such structures. In particular, we have demonstrated the influence of the constitutive model on: (1) the loss of oscillatory behavior of the structure, (2) the transition from periodic motions to quasi-periodic and chaotic motions, (3) the nonlinear resonances of the shells, (4) the propagation of shock waves within the structure and (5) the onset and development of cavitation instabilities. Programa Oficial de Doctorado en Ingeniería Mecánica y de Organización Industrial Presidente: Ignacio Romero Olleros.- Secretario: Massimo Ruzzene.- Vocal: Antonio Morassi
Databáze: OpenAIRE