Order of growth of distributional irregular entire functions for the differentiation operator
Autor: | Bernal González, Luis, Bonilla Ramírez, Antonio Lorenzo |
---|---|
Přispěvatelé: | Universidad de Sevilla. Departamento de Análisis Matemático, Universidad de Sevilla. FQM127: Análisis Funcional no Lineal |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | idUS. Depósito de Investigación de la Universidad de Sevilla instname |
Popis: | We study the rate of growth of entire functions that are distributionally irregular for the differentiation operator D. More specifically, given p ∈ [1,∞] and b ∈ (0, a), where a = 1 / 2 max{2, p}, we prove that there exists a distributionally irregular entire function f for the operator D such that its p-integral mean function Mp(f, r) grows not more rapidly than e r r−b. This completes related known results about the possible rates of growth of such means for D-hypercyclic entire functions. It is also obtained the existence of dense linear submanifolds of H(C) all whose nonzero vectors are D-distributionally irregular and present the same kind of growth. Plan Andaluz de Investigación (Junta de Andalucía) Ministerio de Economía y Competitividad Fondo Europeo de Desarrollo Regional |
Databáze: | OpenAIRE |
Externí odkaz: |