Order of growth of distributional irregular entire functions for the differentiation operator

Autor: Bernal González, Luis, Bonilla Ramírez, Antonio Lorenzo
Přispěvatelé: Universidad de Sevilla. Departamento de Análisis Matemático, Universidad de Sevilla. FQM127: Análisis Funcional no Lineal
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: idUS. Depósito de Investigación de la Universidad de Sevilla
instname
Popis: We study the rate of growth of entire functions that are distributionally irregular for the differentiation operator D. More specifically, given p ∈ [1,∞] and b ∈ (0, a), where a = 1 / 2 max{2, p}, we prove that there exists a distributionally irregular entire function f for the operator D such that its p-integral mean function Mp(f, r) grows not more rapidly than e r r−b. This completes related known results about the possible rates of growth of such means for D-hypercyclic entire functions. It is also obtained the existence of dense linear submanifolds of H(C) all whose nonzero vectors are D-distributionally irregular and present the same kind of growth. Plan Andaluz de Investigación (Junta de Andalucía) Ministerio de Economía y Competitividad Fondo Europeo de Desarrollo Regional
Databáze: OpenAIRE