Detector's quantum backaction effects on a mesoscopic conductor and fluctuation-dissipation relation

Autor: Magazzù, L., Valenti, D., Spagnolo, B., Martin, T., Falci, G., Paladino, E.
Přispěvatelé: Dipartimento di Fisica e Chimica [Palermo] (DiFC), Università degli studi di Palermo - University of Palermo, Lobachevsky State University of Nizhny Novgorod, Lobachevsky State University [Nizhni Novgorod], Institute of Physics, University of Augsburg, Universität Augsburg [Augsburg], Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), CPT - E6 Nanophysique, Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), MATIS CNR-INFM Dipartimento di Metodologie Fisiche e Chimiche (DMFCI) (MATIS), Università degli studi di Catania = University of Catania (Unict)- Istituto Nazionale di Fisica Nucleare (INFN), Istituto Nazionale di Fisica Nucleare, Sezione di Catania (INFN), Università degli studi di Catania = University of Catania (Unict), University of Nizhny Novgorod, Università degli studi di Catania [Catania]- Istituto Nazionale di Fisica Nucleare (INFN), Università degli studi di Catania [Catania], Magazzù, L., Valenti, D., Spagnolo, B., Martin, T., Falci, G., Paladino, E.
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Fortschritte der Physik / Progress of Physics
Fortschritte der Physik / Progress of Physics, 2017, Special Issue: International Conference Frontiers of Quantum and Mesoscopic Thermodynamics Prague, Czech Republic 27 July– 1 August 2015, 65 (6-8), pp.1600059. ⟨10.1002/prop.201600059⟩
DOI: 10.1002/prop.201600059⟩
Popis: International audience; When measuring quantum mechanical properties of charge transport in mesoscopic conductors, backaction effects occur. We consider a measurement setup with an elementary quantum circuit, composed of an inductance and a capacitor, as detector of the current flowing in a nearby quantum point contact. A quantum Langevin equation for the detector variable including backaction effects is derived. Differences with the quantum Langevin equation obtained in linear response are pointed out. In this last case, a relation between fluctuations and dissipation is obtained, provided that an effective temperature of the quantum point contact is defined.
Databáze: OpenAIRE