Mesh-independent modelling of diffuse cracking in cohesive grain-based materials

Autor: Zoltan Csati
Přispěvatelé: Massart, Thierry,Jacques, Moës, Nicolas, Francois, Bertrand, Colliat, Jean-Baptiste, Collin, Frédéric, Legrain, Grégory, Fauchille, Anne-Laure, Institut de Recherche en Génie Civil et Mécanique (GeM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS), École centrale de Nantes, Université libre de Bruxelles (1970-....), Nicolas Moës, Thierry Massart
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: HAL
Mechanics of materials [physics.class-ph]. École centrale de Nantes; Université libre de Bruxelles (1970-..), 2019. English. ⟨NNT : 2019ECDN0037⟩
Popis: In this thesis, a flexible and general stable displacement–Lagrange multiplier mixed formulation is developed to model distributed cracking in cohesive grain-based materials in the framework of the cut finite element method. The displacement field is discretized on each grain separately, and the continuity of the displacement and traction fields across the interfaces between grains is enforced by Lagrange multipliers. The design of the discrete Lagrange multiplier space is detailed for bilinear quadrangular elements with the potential presence of multiple interfaces/discontinuities within an element. We give numerical evidence that the designed Lagrange multiplier space is stable and provide examples demonstrating the robustness of the method. Relying on the stable discretization, a cohesive zone formulation equipped with a damage constitutive model expressed in terms of the traction is used to model the propagation of multiple cracks at the interfaces between grains. To prevent the crack faces from self-penetrating during unloading, a contact condition is enforced. The solutions for the mechanical fields and the damage field are separately obtained and an explicit damage update algorithm allows using a non-iterative approach. The damage formulation couples the normal and tangential failure modes, accounts for different tension and compression behaviours and takes into account a compression-dependent fracture energy in mixed mode. The framework is applied to complex 2D problems inspired by indirect tension tests and compression tests on heterogeneous rock-like materials.
Doctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Databáze: OpenAIRE