aGrUM/pyAgrum : a toolbox to build models and algorithms for Probabilistic Graphical Models in Python

Autor: Gaspard Ducamp, Christophe Gonzales, Pierre-Henri Wuillemin
Přispěvatelé: Sorbonne Université (SU), DECISION, LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU), Laboratoire d'Informatique et Systèmes (LIS), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Ducamp, Gaspard
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: HAL
Popis: International audience; This paper presents the aGrUM framework, a LGPL C++ library providing state-of-the-art implementations of graphical models for decision making, including Bayesian Networks, Markov Networks (Markov random fields), Influence Diagrams, Credal Networks, Probabilistic Relational Models. The framework also contains a wrapper, pyAgrum for exploiting aGrUM in Python. This framework is the result of an ongoing effort to build an efficient and well maintained open source cross-platform software, running on Linux, MacOS X and Windows, for dealing with graphical models and for providing essential components to build new algorithms for graphical models.
Databáze: OpenAIRE