Recurrent Neural Networks for Local Models Prediction

Autor: Cherif, Aymen, Boné, Romuald, Cardot, Hubert
Přispěvatelé: Laboratoire d'Informatique Fondamentale et Appliquée de Tours (LIFAT), Université de Tours (UT)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Maurel, Denis
Jazyk: angličtina
Rok vydání: 2009
Předmět:
Zdroj: ICCN
International Conference on Cognitive Neurodynamics
International Conference on Cognitive Neurodynamics, 2009, Hangzhou, China
ISSN: 2325-2383
Popis: International audience; "Local models" (Walter, J., et al. International Joint Conference on Neural Networks, vol. 1. (1990) 589-594), consists on dividing the data into homogeneous clusters by Vector Quantization (VQ (Gray, R. M., and Neuhoff, D.L. IEEE Trans. Inf. Theory 44(6) (1998) 2325-2383)) to simplify the prediction task on each cluster and mostly inspired from the Self-Organizing Maps algorithm (SOM (Kohonen, T. Self-Organization and associative memory, 3rd edn. (1989))). Since recurrent neural networks have demonstrated in many times a better results and specially for chaotic time series (Boné, R. Recurrent Neural Networks for Time Series Forecasting. (2000)), we propose in this paper a method to use the Recurrent Neural Networks in the local approach.
Databáze: OpenAIRE