Mechanical Verification of a Generic Incremental ABR Conformance Algorithm
Autor: | Rusinowitch, Michaël, Stratulat, Sorin, Klay, Francis |
---|---|
Přispěvatelé: | Constraints, automatic deduction and software properties proofs (PROTHEO), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), INRIA, CNET, Centre National d'Etudes des Télécommunications |
Jazyk: | angličtina |
Rok vydání: | 1999 |
Předmět: | |
Zdroj: | [Research Report] RR-3794, INRIA. 1999, pp.43 Workshop on Modelling & Verification Workshop on Modelling & Verification, Dec 1999, Besancon, France, 43 p |
Popis: | The Available Bit Rate protocol (ABR) for ATM networks is well-adapted to data traffic by providing minimum rate guarantees and low cell loss to the ABR source end system. The protocol relies on a contract between the operator who ensures a minimum rate and the source who must respect a rate that is dynamically allocated to him, according to the resources available in the networks. An ABR conformance algorithm for controlling the source rates through an interface has been defined by ATM Forum. A more efficient version of this algorithm has been designed by C. Rabadan and F. Klay. We present in this work the first complete mechanical verification of the equivalence between these two algorithms. The proof is rather involved and has been supported by the PVS theorem-prover. It has required many lemmas, case analysis and induction reasoning for the manipulation of non bounded scheduling lists. Previous works on the automated verification of ABR conformance protocols have only dealt with approximations of the algorithm we consider here since they assume that the scheduling lists contain at most two elements. |
Databáze: | OpenAIRE |
Externí odkaz: |