The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP)

Autor: Tilmes, S., Fasullo, J., Lamarque, J.-F., Marsh, D.R., Mills, M., Alterskjær, K., Muri, H., Kristjánsson, J.E., Boucher, Olivier, Schulz, M, Cole, J.N.S., Curry, C.L., Jones, A., Haywood, J., Irvine, P.J., Ji, D., Moore, J.C., Bou Karam, Diana, Kravitz, B., Rasch, P.J., Singh, B., Yoon, J.-H., Niemeier, U., Schmidt, H., Robock, A., Yang, S., Watanabe, S.
Přispěvatelé: National Center for Atmospheric Research [Boulder] (NCAR), Department of Geosciences [Oslo], Faculty of Mathematics and Natural Sciences [Oslo], University of Oslo (UiO)-University of Oslo (UiO), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Canadian Centre for Climate Modelling and Analysis (CCCma), Environment and Climate Change Canada, School of Earth and Ocean Sciences [Victoria] (SEOS), University of Victoria [Canada] (UVIC), Met Office Hadley Centre for Climate Change (MOHC), United Kingdom Met Office [Exeter], University of Exeter, Institute for Advanced Sustainability Studies [Potsdam] (IASS), State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE), Beijing Normal University (BNU), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Pacific Northwest National Laboratory (PNNL), Max Planck Institute for Meteorology (MPI-M), Max-Planck-Gesellschaft, Rutgers, The State University of New Jersey [New Brunswick] (RU), Rutgers University System (Rutgers), Danish Meteorological Institute (DMI), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres, American Geophysical Union, 2013, 118 (19), pp.11036-11058. ⟨10.1002/jgrd.50868⟩
Journal of Geophysical Research: Atmospheres, 2013, 118 (19), pp.11036-11058. ⟨10.1002/jgrd.50868⟩
Journal of Geophysical Research-Atmospheres
ISSN: 2169-897X
2169-8996
DOI: 10.1002/jgrd.50868⟩
Popis: International audience; The hydrological impact of enhancing Earth's albedo by solar radiation management is investigated using simulations from 12 Earth System models contributing to the Geoengineering Model Intercomparison Project (GeoMIP). We contrast an idealized experiment, G1, where the global mean radiative forcing is kept at preindustrial conditions by reducing insolation while the CO 2 concentration is quadrupled to a 4×CO2 experiment. The reduction of evapotranspiration over land with instantaneously increasing CO2 concentrations in both experiments largely contributes to an initial reduction in evaporation. A warming surface associated with the transient adjustment in 4×CO2 generates an increase of global precipitation by around 6.9% with large zonal and regional changes in both directions, including a precipitation increase of 10% over Asia and a reduction of 7% for the North American summer monsoon. Reduced global evaporation persists in G1 with temperatures close to preindustrial conditions. Global precipitation is reduced by around 4.5%, and significant reductions occur over monsoonal land regions: East Asia (6%), South Africa (5%), North America (7%), and South America (6%). The general precipitation performance in models is discussed in comparison to observations. In contrast to the 4×CO2 experiment, where the frequency of months with heavy precipitation intensity is increased by over 50% in comparison to the control, a reduction of up to 20% is simulated in G1. These changes in precipitation in both total amount and frequency of extremes point to a considerable weakening of the hydrological cycle in a geoengineered world.
Databáze: OpenAIRE