Analysis of the charging kinetics in silver nanoparticles-silica nanocomposite dielectrics at different temperatures

Autor: Djaou, C, Villeneuve-Faure, C, Makasheva, K, Boudou, L, Teyssedre, G
Přispěvatelé: Diélectriques Solides et Fiabilité (LAPLACE-DSF), LAboratoire PLasma et Conversion d'Energie (LAPLACE), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Sciences et Ingénierie des Plasmas Réactifs et des Arcs (LAPLACE-ScIPRA), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Nano Express
Nano Express, 2021, 2 (4), pp.044001. ⟨10.1088/2632-959X/ac3886⟩
ISSN: 2632-959X
DOI: 10.1088/2632-959X/ac3886⟩
Popis: International audience; Abstract Dielectric nanocomposite materials are now involved in a large panel of electrical engineering applications ranging from micro-/nano-electronics to power devices. The performances of all these systems are critically dependent on the evolution of the electrical properties of the dielectric parts, especially under temperature increase. In this study we investigate the impact of a single plane of silver nanoparticles (AgNPs), embedded near the surface of a thin silica (SiO 2 ) layer, on the electric field distribution, the charge injection and the charge dynamic processes for different AgNPs-based nanocomposites and various temperatures in the range 25°C–110°C. The electrical charges are injected locally by using an Atomic Force Microscopy (AFM) tip and the related surface potential profile is probed by Kelvin Probe Force Microscopy (KPFM). To get deeper in the understanding of the physical phenomena, the electric field distribution in the AgNPs-based nanocomposites is computed by using a Finite Element Modeling (FEM). The results show a strong electrostatic coupling between the AFM tip and the AgNPs, as well as between the AgNPs when the AgNPs-plane is embedded in the vicinity of the SiO 2 -layer surface. At low temperature (25°C) the presence of an AgNPs-plane close to the surface, i.e., at a distance of 7 nm, limits the amount of injected charges. Besides, the AgNPs retain the injected charges and prevent from charge lateral spreading after injection. When the temperature is relatively high (110°C) the amount of injected charges is increased in the nanocomposites compared to low temperatures. Moreover, the speed of lateral charge spreading is increased for the AgNPs-based nanocomposites. All these findings imply that the lateral charge transport in the nanocomposite structures is favored by the closely situated AgNPs because of the strong electrostatic coupling between them, additionally activated by the temperature increase.
Databáze: OpenAIRE