FedCostWAvg: A New Averaging for Better Federated Learning

Autor: Mächler, Leon, Ezhov, Ivan, Kofler, Florian, Shit, Suprosanna, Paetzold, Johannes C, Loehr, Timo, Zimmer, Claus, Wiestler, Benedikt, Menze, Bjoern H
Přispěvatelé: University of Zurich, Crimi, Alessandro, Bakas, Spyridon, Mächler, Leon
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Lect. Notes Comput. Sc. 12963 LNCS, 383-391 (2022)
DOI: 10.5167/uzh-220104
Popis: We propose a simple new aggregation strategy for federated learning that won the MICCAI Federated Tumor Segmentation Challenge 2021 (FETS), the first ever challenge on Federated Learning in the Machine Learning community. Our method addresses the problem of how to aggregate multiple models that were trained on different data sets. Conceptually, we propose a new way to choose the weights when averaging the different models, thereby extending the current state of the art (FedAvg). Empirical validation demonstrates that our approach reaches a notable improvement in segmentation performance compared to FedAvg.
Databáze: OpenAIRE