In situ plant materials hyperspectral imaging by multimodal scattering near-field optical microscopy

Autor: Charrier, Anne, Normand, Aubin, Passian, Ali, Schaefer, Philip, LEREU, Aude L.
Přispěvatelé: Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Institut FRESNEL (FRESNEL), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Oak Ridge National Laboratory [Oak Ridge] (ORNL), UT-Battelle, LLC, Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Communications Materials
Communications Materials, 2021, 2, pp.59. ⟨10.1038/s43246-021-00166-7⟩
Communications Materials, Nature, 2021, 2, pp.59. ⟨10.1038/s43246-021-00166-7⟩
Communications Materials, Vol 2, Iss 1, Pp 1-12 (2021)
ISSN: 2662-4443
DOI: 10.1038/s43246-021-00166-7⟩
Popis: International audience; Plant cells are elaborate three-dimensional polymer nano-constructs with complex chemistry. The bulk response of plants to light, in the far-field, is ultimately encoded by optical scattering from these nano-constructs. Their chemical and physical properties may be acquired through their interaction with a modulated nano-tip using scattering scanning near-field optical microscopy. Here, using this technique, we present 20 nm spatial resolution mechanical, spectral and optical mappings of plant cell walls. We first address the problem of plant polymers tracking through pretreatment and processing. Specifically, cellulose and lignin footprints are traced within a set of delignified specimen, establishing the factors hindering complete removal of lignin, an important industrial polymer. Furthermore, we determine the frequency dependent dielectric function ϵðωÞ ¼ ðn þ ikÞ 2 of plant material in the range 28 ≤ ω ≤ 58 THz, and show how the environmental chemical variation is imprinted in the nanoscale variability of n and k. This nanometrology is a promise for further progress in the development of plant-based (meta-)materials.
Databáze: OpenAIRE