Hybrid Wafers Based on a 'Silicon/PPLN Thin Film' Stack for Optical and Radio-Frequency Applications

Autor: Florent Bassignot, Fabien Henrot, Mathieu Chauvet, Ludovic Manuel, Blandine Edouard Guichardaz, Hervé Maillotte, Sylvain Ballandras
Přispěvatelé: Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Frec’N’Sys (Frec’N’Sys)
Předmět:
Zdroj: Publons
HAL
International Symposium on the Applications of Ferroelectrics, European Conference on Applications of Polar Dielectrics & Workshop on Piezoresponse Force Microscopy
International Symposium on the Applications of Ferroelectrics, European Conference on Applications of Polar Dielectrics & Workshop on Piezoresponse Force Microscopy, Aug 2016, Darmstadt, Germany
Popis: International audience; In this paper, we propose new structures based on “Silicon/PPLN thin film” hybrid wafers for nonlinear-optical and Radio-Frequency applications. This stack is obtained by home-made room-temperature bonding and wafer thinning techniques. Two main wafer bonding techniques have been developed on 3 and 4-inch wafers. The Au/Au bonding for RF applications and the Au/Au/SiO 2 bonding for optical applications. The RF component, an acousto-electric resonator, is based on the electrical excitation of a PPLN thin film. The piezoelectric effect of the lithium niobate material is used to excite acoustic waves in the PPLN. The optical device is a second harmonic generation based on a waveguide defined by a ridge in the PPLN thin film. The concept, the fabrication process and the characterizations of these ones are presented in this paper.
Databáze: OpenAIRE