Semcado: a serendipitous causal discovery algorithm for ontology evolution

Autor: Ben Messaoud, Montassar, Leray, Philippe, Ben Amor, Nahla
Přispěvatelé: Laboratoire d'Informatique de Nantes Atlantique (LINA), Centre National de la Recherche Scientifique (CNRS)-Mines Nantes (Mines Nantes)-Université de Nantes (UN), Laboratoire de Recherche Opérationnelle de Décision et de Contrôle de Processus (LARODEC), Université de Tunis-ISG de Tunis
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Zdroj: ARCOE 2011
ARCOE 2011, 2011, Barcelona, Spain. pp.43-47
Popis: International audience; With the rising need to reuse the existing knowledge when learning Causal Bayesian Networks (CBNs), the ontologies can supply valuable semantic information to make further interesting discoveries with the minimum expected cost and effort. In this paper, we propose a cyclic approach in which we make use of the ontology in an interchangeable way. The first direction involves the integration of semantic knowledge to anticipate the optimal choice of experimentations via a serendipitous causal discovery strategy. The second complementary direction concerns an enrichment process by which it will be possible to reuse these causal discoveries , support the evolving character of the semantic background and make an ontology evolution .
Databáze: OpenAIRE