On the high regularity of solutions to the p-Laplacian boundary value problem in exterior domains
Autor: | Crispo, Francesca, Grisanti, CARLO ROMANO, Maremonti, Paolo |
---|---|
Přispěvatelé: | Crispo, Francesca, Grisanti, C. R., Maremonti, Paolo |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: | |
Popis: | In this note, we consider the boundary value problem in exterior domains for the p-Laplacian system, p ∈ (1, 2). For suitable p and Lr -spaces, r > n, we furnish existence of a high-regular solution that is a solution whose second derivatives belong to L r (Ω ). Hence, in particular we get λ-Hölder continuity of the gradient of the solution, with λ = 1 − n/r. Further, we improve previous results on W2,2-regularity in a bounded domain. |
Databáze: | OpenAIRE |
Externí odkaz: |