Regular representations of GLn( O) and the inertial Langlands correspondence
Autor: | Szumowicz, Anna Maria |
---|---|
Přispěvatelé: | Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Sorbonne Université, University of Durham, Anne-Marie Aubert, Alexander Stasinski |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Representation theory of p-adic reductive group
Polynômes à valeurs entières Number theory Types cuspidaux [MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] Théorie des représentations des groupes p-adiques Théorie des nombres P-rangements Cuspidal types Integervalued polynomials Simultaneous p-orderings [MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] |
Zdroj: | Number Theory [math.NT]. Sorbonne Université; University of Durham, 2019. English. ⟨NNT : 2019SORUS360⟩ |
Popis: | This thesis is divided into two parts. The first one comes from the representation theory of reductive p-adic groups. The main motivation behind this part of the thesis is to find new explicit information and invariants of the types in general linear groups. Let F be a nonArchimedean local field and let OF be its ring of integers. We give an explicit description of cuspidal types on GLp(OF ), with p prime, in terms of orbits. We determine which of them are regular representations and we provide an example which shows that an orbit of a representation does not always determine whether it is a cuspidal type or not. At the same time we prove that a cuspidal type for a representation π of GLp(F) is regular if and only if the normalised level of π is equal to m or m − 1 p for m ∈ Z. The second part of the thesis comes from the theory of integer-valued polynomials and simultaneous p-orderings. This is a joint work with Mikołaj Frączyk. The notion of simultaneous p-ordering was introduced by Bhargava in his early work on integer-valued polynomials. Let k be a number field and let Ok be its ring of integers. Roughly speaking a simultaneous p-ordering is a sequence of elements from Ok which is equidistributed modulo every power of every prime ideal in Ok as well as possible. Bhargava asked which subsets of Dedekind domains admit simultaneous p-ordering. Together with Mikołaj Frączyk we proved that the only number field k with Ok admitting a simultaneous p-ordering is Q.; Cette thèse contient deux parties. La première porte sur la théorie des représentations des groupes p-adiques. Le but est de trouver de nouvelles informations et de nouveaux invariants des types cuspidaux de groupes linéaires généraux. Soit F un corps local non archimédien et soit OF son anneau des entiers. Nous décrivons les types cuspidaux sur GLp(OF ) (où p est un nombre premier) en termes d’orbites. Nous déterminons quels types cuspidaux sont réguliers et donnons un exemple qui montre que l’orbite de la représentation ne suffit pas à déterminer si la représentation est un type cuspidal ou non. Nous montrons qu’un type cuspidal pour une représentation π de GLp(F) est régulier si et seulement si le niveau normalisé de π est égal à m ou m − 1 p pour un certain m ∈ Z. La deuxième partie porte sur les polynômes à valeurs entières, les p-rangements simultanés (au sens de Bhargava) et l’équidistribution dans les corps des nombres. C’est un projet joint avec Mikołaj Frączyk. La notion de p-rangement provient des travaux de Bhargava sur les polynômes à valeurs entières. Soit k un corps de nombres et soit Ok son anneau des entiers. Une suite d’éléments de Ok est un p-rangement simultané si elle est équidistribuée modulo tous les idéaux premières de Ok du mieux possible. Nous prouvons que le seul corps de nombres k tel que Ok admette des p-rangements simultanés est Q. |
Databáze: | OpenAIRE |
Externí odkaz: |