A variational formulation of constitutive models and updates in nonlinear finite viscoelasticity
Autor: | Fancello , Eduardo, Stainier , Laurent, Ponthot , Jean-Philippe |
---|---|
Přispěvatelé: | Universidade Federal de Santa Catarina [Florianópolis] ( UFSC ), Département AéroSpatiale, Mécanique et mAtériaux ( ASMA ), European Organization for Nuclear Research ( CERN ), CSMA, Universidade Federal de Santa Catarina = Federal University of Santa Catarina [Florianópolis] (UFSC), Département AéroSpatiale, Mécanique et mAtériaux (ASMA), European Organization for Nuclear Research (CERN), Legrand, Mathias |
Jazyk: | francouzština |
Rok vydání: | 2005 |
Předmět: |
variational formulations
formulations variationnelles modèles constitutifs non-linéaires nonlinear constitutive models viscoélasticité [PHYS.MECA]Physics [physics]/Mechanics [physics] [ PHYS.MECA ] Physics [physics]/Mechanics [physics] [PHYS.MECA] Physics [physics]/Mechanics [physics] viscoelasticity |
Zdroj: | 7e colloque national en calcul des structures 7e colloque national en calcul des structures, May 2005, Giens, France. 7e colloque national en calcul des structures, 2005 7e colloque national en calcul des structures, CSMA, May 2005, Giens, France |
Popis: | International audience; In [ORT 99], Ortiz and Stainier proposed a general variational approach for elasto-plastic models in finite deformations regime. This work can be extended to finite viscoleastic models, as shown in [STA 03]. The striking feature of this approach is its variational characteristic which provides an appropriate mathematical structure and allows the use of theoretical and numerical facilities like, for instance, error estimation studies or mathematical programming algorithms. The present paper follows the same path and focuses on a general variational approach for finite viscoelastic models. In addition, a specific group of them (generalized Kelvin-Maxwell models) is analyzed with detail, together with numerical implementation. Finally , numerical simulations illustrate the performance of the present approach. |
Databáze: | OpenAIRE |
Externí odkaz: |