Aplicaciones del principio del máximo generalizado de Omori-Yau al estudio de la geometría global de hipersuperficies en espacios de curvatura constante
Autor: | García Martínez, Sandra Carolina |
---|---|
Přispěvatelé: | Alías Linares, Luis José, Facultad de Matemáticas, Alías Linares, Luis J., Universidad de Murcia. Departamento de Matemáticas |
Jazyk: | Spanish; Castilian |
Rok vydání: | 2018 |
Předmět: |
hipersuperficies totalmente umbilicales
first Newton tensor curvatura escalar parabolicity isoparametric hypersurfaces completitud totally umbilical Geometría diferencial global dos curvaturas principales distintas segunda forma fundamental sin traza scalar curvature 514 - Geometría traceless second fundamental form parabolicidad Geometría Diferencial primera transformación de Newton two distinct principal curvatures curvatura media constante stochastic completeness Omori-Yau maximum principle completeness completitud estocástica Principio del máximo de Omori-Yau constant mean curvature Mathematics::Differential Geometry |
Zdroj: | DIGITUM. Depósito Digital Institucional de la Universidad de Murcia instname TDR (Tesis Doctorales en Red) |
Popis: | El objetivo principal de este trabajo es presentar la evolución del principio del máximo y algunas aplicaciones de él a problemas geométricos. En este sentido, estudiamos el comportamiento de la curvatura escalar S de hipersuperficies de curvatura media constante inmersas en espacios forma, bajo hipótesis de no-compacidad como: la completitud y la completitud estocástica, obteniendo una estimación óptima para el ínfimo de S. Además, estudiamos estas hipersuperficies con las condiciones de dos curvaturas principales y que verifiquen el principio del máximo de Omori-Yau, derivando una estimación óptima para el supremo de S. Por último, damos un principio débil del máximo del operador diferencial L, introducido por Cheng y Yau [19] para el estudio de hipersuperficies completas de curvatura escalar constante, y presentamos una aplicación donde se estima el ínfimo de la curvatura media de estas hipersuperficies. Los resultados de este trabajo están recogidos en los artículos [5], [6] y [7]. The goal of this work is to show the evolution of the maximum principle and several applications of this to geometric problems. In this sense, we study the behavior of the scalar curvature S of hypersurfaces immersed with constant mean curvature into a Riemannian space form, under non-compactness’s hypotheses as: the completeness and the stochastic completeness, obtaining a sharp estimate for the infimum of S. Moreover, we study these hypersurfaces with the conditions of two principal curvatures and satisfying the Omori-Yau maximum principle, deriving a sharp estimate for the supremum of S. Finally, we establish a weak maximum principle of differential operator L, introduced by Cheng and Yau [19] for study of complete hypersurfaces with constant scalar curvature , and give an application where we estimate the infimum of the mean curvature of these hypersurfaces . The results of this work are collected in the papers [5], [6] and [7]. |
Databáze: | OpenAIRE |
Externí odkaz: |