Estimación de campos de precipitación en cuencas hidrográficas colombianas con escasez de datos, combinando datos teledetectados y de estaciones en tierra, utilizando funciones de Kernel
Autor: | Duque Gardeazábal, Nicolás |
---|---|
Přispěvatelé: | Rodríguez Sandoval, Erasmo Alfredo |
Jazyk: | Spanish; Castilian |
Rok vydání: | 2018 |
Předmět: |
Rainfall
Hidrología Water resources Funciones Kernel Remote sensing Recursos hídricos Merging Modelling Precipitación Kernel functions 51 Matemáticas / Mathematics 62 Ingeniería y operaciones afines / Engineering Teledetección Modelación Mezcla Hydrology 55 Ciencias de la tierra / Earth sciences and geology |
Zdroj: | Repositorio UN Universidad Nacional de Colombia instacron:Universidad Nacional de Colombia |
Popis: | Resumen: De las variables del ciclo hidrológico, la precipitación es una de las más cambiantes y complejas. Además, la información hidrometeorológica es escasa en varias zonas del mundo y los datos teledetectados pueden ayudar a mejorar las estimaciones de lluvia. Se explora en este trabajo el desempeño del algoritmo de mezcla de doble suavizamiento (DS) con funciones de Kernel, variando la densidad de pluviómetros, cuyos resultados se comparan contra varios métodos tradicionales de interpolación como IDW, Kriging ordinario y Kriging con deriva externa. La comparación se realizó mediante validación cruzada, validación independiente y los campos también se contrastaron con un campo base de comparación en la cuenca del río Sogamoso. Adicionalmente se hizo una evaluación de los campos de precipitación producidos a través de modelación hidrológica en la cuenca del río Casanare. Se encontró que el método investigado puede reducir el error de la estimación en cerca del 20%, cuando se comparó directamente contra los pluviómetros y que el coeficiente de Nash-Sutcliffe usado en la modelación hidrológica presentó mejoras entre un 20 % y un 50 %. También se desarrollaron análisis espaciales y espacio temporales del error, así como un análisis de las hidrógrafas simuladas, producidas por diferentes campos de precipitación. En consecuencia, se recomienda usar la mezcla con DS tanto en redes con densidades altas como bajas. Abstract: Precipitation is one of the most changing and complex variables of the water cycle. Moreover, hydrometeorological data is scarce in many regions of the world and remote sensed data can aid to improve the rainfall estimations. In this work, we explore the performance of the double smoothing merging algorithm, varying the raingauge density and comparing its results with traditional interpolation methods such as IDW, ordinary Kriging and Kriging with external drift. The comparison was performed using cross-validation and independent validation methodologies. Also, the rainfall fields were contrasted against a benchmark rainfall field in the Sogamoso river basin. Another validation was carried out using hydrological modelling in the Casanare river basin. It was found that the merging method can reduce the error estimation in nearly 20 % when the fields are compared with the raingauges, and that for the hydrological modelling the Nash-Sutcliffe coefficient registered an improvement between 20 % and 50 %. Furthermore, spatial and spatio-temporal analysis were carried out, as well as studies of the simulated hydrographs, produced by the different rainfall fields. Consequently, we recommend to use the DS merging algorithm in both, high and low density monitoring raingauges networks. Maestría |
Databáze: | OpenAIRE |
Externí odkaz: |