Prime numbers, Goldbach's conjecture, De Polignac's conjecture, Legendre's conjecture, Landau's conjecture, Mersenne's conjecture, and the Fermat number conjecture

Autor: Sghiar, Mohamed
Přispěvatelé: Sghiar, Mohamed, Chercheur indépendant
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Goldbach's conjecture
Mathematics::General Mathematics
Mersenne's conjecture
Mathematics::Number Theory
Mathematics::History and Overview
Prime numbers
[MATH.MATH-FA] Mathematics [math]/Functional Analysis [math.FA]
[MATH.MATH-GM] Mathematics [math]/General Mathematics [math.GM]
De Polignac's conjecture
[MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA]
[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA]
[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]
[MATH.MATH-CA] Mathematics [math]/Classical Analysis and ODEs [math.CA]
[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]
the Landau's conjecture
the Goldbach conjectures
Legendre's conjecture
[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM]
the De Polignac's Conjecture
the Legendre's conjecture
Fermat number conjecture
[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
Prime Number
Landau's conjecture
[MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT]
Popis: Inspired by the article [3], the introduction of the function $\hat{\circledS}$ whose integer zeros are the prime numbers, will allow me to demonstrate analytically the Goldbach's conjecture [6], the De Polignac's Conjecture [7], the Legendre's conjecture [9], Landau's conjecture [10], Mersenne's conjecture [11] , and the Fermat number conjecture [12]
Inspiré de l'article [3], l'introduction de la fonction $\hat{\circledS}$ dont les zéros entiers sont les nombres premiers, va me permettre de démontrer analytiquement la conjecture de Goldbach [6], la conjecture de De Polignac [7], la conjecture de Legendre [9] et la conjecture de Landau [10], la conjecture de Mersenne [11] et la conjecture des nombres de Fermat (12]
Databáze: OpenAIRE