Efficient algorithms for constructing D- and I-optimal exact designs for linear and non-linear models in mixture experiments

Autor: Martín Martín, Raúl, García Camacha Gutiérrez, Irene, Torsney, Bernard
Rok vydání: 2019
Předmět:
Zdroj: SORT-Statistics and Operations Research Transactions; 2019: Vol.: 43 Núm.: 1 January-June; p. 163-190
oai:raco.cat:article/356187
RUIdeRA. Repositorio Institucional de la UCLM
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
RUIdeRA: Repositorio Institucional de la UCLM
Universidad de Castilla-La Mancha
Repositori Institucional de la Universitat Rovira i Virgili
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
ISSN: 1696-2281
Popis: The problem of finding optimal exact designs is more challenging than that of approximate optimal designs. In the present paper, we develop two efficient algorithms to numerically construct exact designs for mixture experiments. The first is a novel approach to the well-known multiplicative algorithm based on sets of permutation points, while the second uses genetic algorithms. Using (i) linear and non-linear models, (ii) D/- and I-optimality criteria, and (iii) constraints on the ingredients, both approaches are explored through several practical problems arising in the chemical, pharmaceutical and oil industry.
Databáze: OpenAIRE