Análise não-standard em equações diferenciais ordinárias e na teoria dos pontos críticos

Autor: Martins, Natália da Costa
Přispěvatelé: Neves, Vítor Manuel Carvalho das, Borges, Maria João Simões Nunes
Jazyk: portugalština
Rok vydání: 2006
Předmět:
Zdroj: Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Popis: Doutoramento em Matemática Esta dissertação apresenta várias aplicações da Análise Não-Standard à Teoria das Equações Diferenciais Ordinárias e à Teoria dos Pontos Críticos. Relativamente à Teoria das Equações Diferenciais Ordinárias, são apresentadas generalizações não-standard de dois resultados importantes desta teoria, bem como uma nova prova não-standard do Teorema de Existência de Carathéodory e dedução correspondente do Teorema de Existência de Peano. Um dos resultados fundamentais da Teoria dos Pontos Críticos é o Teorema da Passagem da Montanha de Ambrosetti-Rabinowitz. Neste contexto, são apresentadas várias provas não-standard deste teorema para funcionais coercivos definidos em espaços de Banach reais de dimensão finita, além de várias generalizações não-standard de condições do tipo de Palais-Smale que permitem a demonstração de novos teoremas. São ainda apresentados dois novos teoremas da passagem da montanha sem a condição de Palais-Smale ou suas generalizações. Todos estes teoremas permitem obter novos teoremas de três pontos críticos. This dissertation describes several applications of Nonstandard Analysis both to the Ordinary Differential Equations Theory and to the Critical Point Theory. Two important results of Ordinary Differential Equations Theory are generalized according to Nonstandard Analysis, a new nonstandard proof of Carathéodory's Existence Theorem is presented wherefrom Peano's Existence Theorem is deduced. One of the fundamental results of Critical Point Theory is the Mountain Pass Theorem of Ambrosetti-Rabinowitz. Several nonstandard proofs of this theorem for coercive functionals defined in finite dimensional real Banach spaces are presented together with some nonstandard generalizations of Palais-Smale conditions that allow the demonstration of new theorems. Two new mountain pass theorems are also proved without using the Palais-Smale condition or generalizations thereof. These mountain pass theorems are used to obtain new three critical points theorems.
Databáze: OpenAIRE