On the quantitative estimates of the remainder in normal forms

Autor: Ollé Torner, Mercè, Pacha Andújar, Juan Ramón, Villanueva Castelltort, Jordi
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
Jazyk: angličtina
Rok vydání: 2002
Předmět:
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
Popis: We consider an analytic Hamiltonian system with three degrees of freedom and having a family of periodic orbits with a transition stability complex instability. We reduce the Hamiltonian to a normal form around a transition periodic orbit and we obtain H = Z^r + R^r. The analysis of the (truncated) normal form, Z^r, allows the description of a Hopf bifurcation of 2D-tori. However, this communication will concentrate on the study of the remainder, R^r and some comparison between the remainder obtained when considering the normal form around an elliptic equilibrium point and around a critical periodic orbit will be made.
Databáze: OpenAIRE