Towards a sharp estimation of transfer entropy for identifying causality in financial time series

Autor: Serès, A., Cabaña, A., Argimiro Arratia
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Ciències de la Computació, Universitat Politècnica de Catalunya. LARCA - Laboratori d'Algorísmia Relacional, Complexitat i Aprenentatge
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Universitat Autònoma de Barcelona
ResearcherID
Scopus-Elsevier
Recercat. Dipósit de la Recerca de Catalunya
instname
Popis: We present an improvement of an estimator of causality in financial time series via transfer entropy, which includes the side information that may affect the cause-effect relation in the system, i.e. a conditional information-transfer based causality. We show that for weakly stationary time series the conditional transfer entropy measure is nonnegative and bounded below by the Geweke's measure of Granger causality. We use k-nearest neighbor distances to estimate entropy and approximate the distribution of the estimator with bootstrap techniques. We give examples of the application of the estimator in detecting causal effects in a simulated autoregressive stationary system in three random variables with linear and non-linear couplings; in a system of non stationary variables; and with real financial data.
Databáze: OpenAIRE