WHEN CAN THE DISCRETE MORAN PROCESS BE REPLACED BY WRIGHT-FISHER DIFFUSION?

Autor: Gackou, Gorgui, Guillin, Arnaud, Personne, Arnaud
Přispěvatelé: Laboratoire de Mathématiques Blaise Pascal (LMBP), Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Université Clermont Auvergne [2017-2020] (UCA [2017-2020]), Laboratoire de mathématiques Blaise Pascal
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Popis: The Moran discrete process and the Wright-Fisher modelare the most popular models in population genetics. It is common tounderstand the dynamics of these models to use an approximating diffusionprocess, called Wright-Fisher diffusion. Here, we give a quantitativelarge population limit of the error committed by using the approximationdiffusion in the presence of weak selection and weak immigrationin one dimension. The approach is robust enough to consider the casewhere selection and immigration are Markovian processes, with limitsjump or diffusion processes.
Databáze: OpenAIRE