Autor: |
Gackou, Gorgui, Guillin, Arnaud, Personne, Arnaud |
Přispěvatelé: |
Laboratoire de Mathématiques Blaise Pascal (LMBP), Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Université Clermont Auvergne [2017-2020] (UCA [2017-2020]), Laboratoire de mathématiques Blaise Pascal |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Popis: |
The Moran discrete process and the Wright-Fisher modelare the most popular models in population genetics. It is common tounderstand the dynamics of these models to use an approximating diffusionprocess, called Wright-Fisher diffusion. Here, we give a quantitativelarge population limit of the error committed by using the approximationdiffusion in the presence of weak selection and weak immigrationin one dimension. The approach is robust enough to consider the casewhere selection and immigration are Markovian processes, with limitsjump or diffusion processes. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|