Autor: |
BONCKAERT, Patrick, NAUDOT, Vincent |
Přispěvatelé: |
BONCKAERT, Patrick, NAUDOT, Vincent |
Jazyk: |
angličtina |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
Electronic Journal of Differential Equations, Vol 2017, Iss 266, Pp 1-29 (2017) |
ISSN: |
1072-6691 |
Popis: |
We show that any germ of smooth hyperbolic diffeomophism at a fixed point is conjugate to its linear part, using a transformation with a Mourtada type functions, which (roughly) means that it may contain terms like $x \log |x|$. Such a conjugacy admits a Mourtada type expansion. In the planar case, when the fixed point is a p:-q resonant saddle, and if we assume that the diffeomorphism is of Gevrey class, we give an upper bound on the Gevrey estimates for this expansion. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|