Linearization of hyperbolic resonant fixed points of diffeomorphisms with related Gevrey estimates in the planar case

Autor: BONCKAERT, Patrick, NAUDOT, Vincent
Přispěvatelé: BONCKAERT, Patrick, NAUDOT, Vincent
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Electronic Journal of Differential Equations, Vol 2017, Iss 266, Pp 1-29 (2017)
ISSN: 1072-6691
Popis: We show that any germ of smooth hyperbolic diffeomophism at a fixed point is conjugate to its linear part, using a transformation with a Mourtada type functions, which (roughly) means that it may contain terms like $x \log |x|$. Such a conjugacy admits a Mourtada type expansion. In the planar case, when the fixed point is a p:-q resonant saddle, and if we assume that the diffeomorphism is of Gevrey class, we give an upper bound on the Gevrey estimates for this expansion.
Databáze: OpenAIRE