Geomasking through perturbation, or counting points in circles
Autor: | Löffler, Maarten, Luo, Jun, Silveira, Rodrigo Ignacio|||0000-0003-0202-4543 |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. CGA -Computational Geometry and Applications, Universitat Politècnica de Catalunya. CGA - Computational Geometry and Applications |
Předmět: |
Geometry
Algebraic Geometria algèbrica--Aritmètica 14 Algebraic geometry::14Q Computational aspects in algebraic geometry [Classificació AMS] 11 Number theory::11G Arithmetic algebraic geometry (Diophantine geometry) [Classificació AMS] Matemàtiques i estadística::Geometria::Geometria algebraica [Àrees temàtiques de la UPC] Matemàtiques i estadística::Geometria::Geometria computacional [Àrees temàtiques de la UPC] Arithmetical algebraic geometry Geometria algèbrica |
Zdroj: | Recercat. Dipósit de la Recerca de Catalunya instname UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
Popis: | Motivated by a technique in privacy protection, in which n points are randomly perturbed by at most a distance r, we study the following problem: Given n points and m circles in the plane, what is the maximum r such that the number of points included in each circle does not change? We also consider a more general question, where we allow the number of points included in each circle to change by a certain factor. We discuss several algorithms for the problems, analyze what parameters of the input influence their running times, and consider a special case where the circles are aligned on a grid, which has important applications. |
Databáze: | OpenAIRE |
Externí odkaz: |