Un modèle de neige conceptuel avec une résolution analytique des équations de chaleur et de changement de phase

Autor: Riboust, P., Le Moine, N., Thirel, G., Ribstein, P.
Přispěvatelé: Centre National de la Recherche Scientifique (CNRS), Hydrosystèmes et Bioprocédés (UR HBAN), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols (METIS), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), SORBONNE UNIVERSITES UPMC CNRS EPHE UMR 7619 METIS PARIS FRA, IRSTEA ANTONY UR HBAN FRA, Irstea Publications, Migration
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: EGU General Assembly 2017
EGU General Assembly 2017, Apr 2017, Vienna, Austria. Geophysical Research Abstracts, 19, pp.1, 2017
EGU General Assembly 2017, Apr 2017, Vienna, Austria. pp.1, 2017
IAHS General Assembly
IAHS General Assembly, Jul 2017, Port Elizabeth, South Africa. pp.34
Popis: International audience; Compared to degree-day snow models, physically-based snow models resolve more processes in an attempt to achieve a better representation of reality. Often these physically-based models resolve the heat transport equations in snow using a vertical discretization of the snowpack. The snowpack is decomposed into several layers in which the mechanical and thermal states of the snow are calculated. A higher number of layers in the snowpack allow for better accuracy but it also tends to increase the computational costs. In order to develop a snow model that estimates the temperature profile of snow with a lower computational cost, we used an analytical decomposition of the vertical profile using eigenfunctions (i.e. trigonometric functions adapted to the specific boundary conditions). The mass transfer of snow melt has also been estimated using an analytical conceptualization of runoff fingering and matrix flow. As external meteorological forcing, the model uses solar and atmospheric radiation, air temperature, atmospheric humidity and precipitations. It has been tested and calibrated at point scale at two different stations in the Alps: Col de Porte (France, 1325 m) and Weissfluhjoch (Switzerland, 2540 m). A sensitivity analysis of model parameters and model inputs will be presented together with a comparison with measured snow surface temperature, SWE, snow depth, temperature profile and snow melt data. The snow model is created in order to be ultimately coupled with hydrological models for rainfall-runoff modeling in mountainous areas. We hope to create a model faster than physically-based models but capable to estimate more physical processes than degree-day snow models. This should help to build a more reliable snow model capable of being easily calibrated by remote sensing and in situ observation or to assimilate these data for operational forecasting purposes.
Databáze: OpenAIRE