A non-intrusive model to predict the flexible energy in a residential building
Autor: | Dufour, Luc, Genoud, Dominique, Jara, Antonio, Treboux, Jerome, Ladevie, Bruno, Bézian, Jean-Jacques |
---|---|
Přispěvatelé: | Technopole de Sierre, Haute Ecole Spécialisée de Suisse Occidentale (HES-SO), Centre de recherche d'Albi en génie des procédés des solides divisés, de l'énergie et de l'environnement (RAPSODEE), Centre National de la Recherche Scientifique (CNRS)-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT) |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | WCNC 2015-IEEE Wireless Communications and Networking Conference WCNC 2015-IEEE Wireless Communications and Networking Conference, Mar 2015, New Orleans, United States. pp.69-74 |
Popis: | IEEE Wireless Communications and Networking Conference Workshops (WCNCW), New Orleans, LA, MAR 09-12, 2015; International audience; The building energy consumption represent 60% of total primary energy consumption in the world. In order to control the demand response schemes for residential users, it is crucial to be able to predict the different components of the total power consumption of a household. This work provide a non intrusive identification model of devices with a sample frequency of one hertz. The identification results are the inputs of a model to predict the flexible energy. This corresponds at the different devices could be shift in a predetermined time. In a residential building, the heating and the hot water represent this flexible energy. The Support Vector Machine (SVM) enable an identification around 95% of heating, hot water, household electrical and a ensemble of decision tree provide the prediction for the next 15 minutes. |
Databáze: | OpenAIRE |
Externí odkaz: |