Bézier curves and C2 interpolation in Riemannian Symmetric Spaces
Autor: | samir, chafik, Adouani, Ines |
---|---|
Přispěvatelé: | Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale Supérieure des Mines de St Etienne-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020]) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Geometric Science of Information4th International Conference, GSI 2019, Toulouse, France, August 27–29, 2019, Proceedings 4th International Conference on Geometric Science of Information 4th International Conference on Geometric Science of Information, Aug 2019, Toulouse, France. ⟨10.1007/978-3-030-26980-7_61⟩ |
DOI: | 10.1007/978-3-030-26980-7_61⟩ |
Popis: | International audience; We consider the problem of interpolating a finite set of observations at given time instant. In this paper, we introduce a new method to compute the optimal intermediate control points that define a C 2 interpolating Bézier curve. We prove this concept for interpolating data points belonging to a Riemannian symmetric spaces. The main property of the proposed method is that the control points minimize the mean square acceleration. Moreover, potential applications of fitting smooth paths on Riemannian manifold include applications in robotics, animations, graphics, and medical studies. |
Databáze: | OpenAIRE |
Externí odkaz: |