Integrating an electrokinetic actuation method on a plasmonic biosensor

Autor: Avenas, Quentin
Přispěvatelé: INL - Dispositifs Electroniques (INL - DE), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon, Université de Sherbrooke (Québec, Canada), Paul Charette, Abdelkader Souifi, STAR, ABES
Jazyk: francouzština
Rok vydání: 2018
Předmět:
Zdroj: Micro et nanotechnologies/Microélectronique. Université de Lyon; Université de Sherbrooke (Québec, Canada), 2018. Français. ⟨NNT : 2018LYSEI122⟩
Popis: This thesis focuses on the development of an integrated plasmonic sensor capable to perform mass transport on targeted objects. The goal is to overcome the diffusion limit by trapping particules directly on the sensing surface. The adopted strategy was to structure the gold layer used for plasmonic detection in order to use the sofabricated structures to set the fluid and the molecules in motion by applying electric fields in the fluid. The mass transfer is realized through dielectrophoresis and electroosmosis, those two electrokinetic effects being operated by electrodes acting as sensor and actuator at the same time. An exhaustive state of the art as well as multiphysical simulations allowed us for designing a prototype for an integrated sensor consisting in gold interdigitated electrodes enabling plasmoninc sensing. The proposed device was obtained through microfabrication in clean room facilities and was characterized before the study of its performances. A first sequence of tests on a model system – polystyrene microbeads in water – brought the proof of concept we needed to validate the correct operation of the sensor, which is indeed capable of quickly trapping targeted objects on its surface and detecting them. The mass transfer mechanisms were explained and we showed the enhancement of the limit of detection by a factor greater than 100. In a second phase, performances of the sensor applied to biological objects were evaluated. It can effectively trap yeasts and proteins but no enhancement has been observed while detecting DNA hybridization events. Causes for this result were discussed and understood and two different solutions were explored: the adaptation of the operating frequency and the optimization of the electrodes geometry. Thus, this study highlighted the problematic of operating electrokinetic effects in biological media and suggested relevant leads towards its resolution.
Cette thèse porte sur le développement d’un capteur plasmonique intégrant une fonction d’actuation des objets visés. L’objectif est de passer outre la limite de diffusion rencontrée à basse concentration en piégeant les particules sur la surface de détection. La stratégie adoptée est de structurer le film d’or servant à la détection de manière à pouvoir l’utiliser pour mettre en mouvement le fluide et les molécules par le biais de champs électriques. Le transfert de masse est réalisé par diélectrophorèse et électroosmose, deux effets électrocinétiques mis en oeuvre par des électrodes servant à la fois d’actuateur et de capteur plasmonique. Un état de l’art exhaustif et des simulations multiphysiques ont permis de concevoir un prototype de capteur intégré constitué d’électrodes interdigitées en or permettant la détection plasmonique. Le dispositif proposé a été obtenu par microfabrication en salle blanche puis caractérisé avant l’étude de ses performances. Une première phase de tests sur un système modèle, des billes de polystyrène dans de l’eau, a permis d’apporter la preuve de concept du fonctionnement du capteur, qui est effectivement capable de piéger rapidement les objets visés à sa surface afin de les détecter. Les mécanismes de transfert de masse ont été expliqués et la preuve de l’amélioration de la limite de détection par un facteur supérieur à 100 a été apportée. Dans un second temps, les performances du capteur appliqué à des objets biologiques ont été évaluées. Celui-ci piège efficacement des levures et des protéines, mais aucune amélioration n’a été observée dans le cas de la détection spécifique de l’hybridation entre deux brins d’acide désoxyribonucléique (ADN). Les causes de ce résultat ont été discutées et comprises et deux solutions différentes ont été explorées : l’adaptation de la fréquence d’opération et l’optimisation de la géométrie des électrodes. Ainsi, cette étude a permis de souligner la problématique de la mise en oeuvre d’effets électrocinétiques dans des milieux biologiques et de réfléchir aux pistes pertinentes pour sa résolution.
Databáze: OpenAIRE