UPMC at MediaEval 2013: Relevance by Text and Diversity by Visual Clustering

Autor: Kuoman Mamani, Christian Antonio, Tollari, Sabrina, Detyniecki, Marcin
Přispěvatelé: Learning, Fuzzy and Intelligent systems (LFI), Laboratoire d'Informatique de Paris 6 (LIP6), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Kuoman Mamani, Christian Antonio
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: MediaEval 2013 Multimedia Benchmark Workshop
MediaEval 2013 Multimedia Benchmark Workshop, Oct 2013, Barcelona, Spain
Popis: International audience; In the diversity task, our strategy was to, first, try to improve relevance, and then to cluster similar images to improve diversity. We propose a four step framework, based on AHC clustering and different reranking strategies. A large number of tests on devset showed that most of the best strategies include text based reranking for pertinence, and visual clustering for diversity - even compared to location based descriptors. Results on expert and crowd-sourcing testset grounds truths seem to confirm these observations.
Databáze: OpenAIRE