Numerical study of a nonequilibrium H 2 − O 2 rocket nozzle flow

Autor: Zidane, Abderrahmane, Haoui, Rabah, Sellam, Mohamed, Bouyahiaoui, Zineddine
Přispěvatelé: LMESC, University of Sciences and Technology Houari Boumediene [Alger] (USTHB), Laboratoire de Mécanique et d'Energétique d'Evry (LMEE), Université d'Évry-Val-d'Essonne (UEVE), Université des Sciences et de la Technologie Houari Boumediene = University of Sciences and Technology Houari Boumediene [Alger] (USTHB)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: International Journal of Hydrogen Energy
International Journal of Hydrogen Energy, Elsevier, In press, ⟨10.1016/j.ijhydene.2018.12.149⟩
International Journal of Hydrogen Energy, In press, ⟨10.1016/j.ijhydene.2018.12.149⟩
ISSN: 0360-3199
DOI: 10.1016/j.ijhydene.2018.12.149⟩
Popis: International audience; A numerical investigation is conducted to study an H2−O2 rocket nozzle flow in chemical and vibrational nonequilibrium. Therefore, a 9 reactions kinetic model was implemented in our two-temperature house code. The vibrational relaxation times taken from Skrebkov's theoretical model and utilized in our simulations are found to be better suited for the H2−O2 mixture than those evaluated using Millikan & White semi-empiric formula. The utilized 9 reactions kinetic model demonstrates a good modeling of the chemical nonequilibrium. The results show the presence of three regions in propulsive nozzles: an equilibrium region, a nonequilibrium region followed by a return to equilibrium region. Vibrational nonequilibrium effects on flowfield parameters and nozzle performances in fuel-rich flows of H2−O2 rocket are investigated, by comparing this baseline simulation to vibrational equilibrium simulation. Vibrational nonequilibrium effects on flowfield parameters and on nozzle performances are computed and shown to be minor. A reduction of 90% of computation time is observed when using the vibrational equilibrium configuration instead of the vibrational nonequilibrium configuration.
Databáze: OpenAIRE