Popis: |
If the instance of an optimization problem changes, an initial solution may become suboptimal or infeasible. It is then necessary to compute a new solution, but it is also desirable to keep some decisions from the initial solution unchanged. In this thesis we propose the anchoring criterion to favor unchanged decisions between solutions. In a reoptimization setting, the goal is to find a new solution while keeping a maximum number of decisions from the initial solution. In a robust 2-stage optimization setting, we propose the anchor-robust approach to compute in advance a baseline solution, along with a subset of so-called anchored decisions. For any realization in the considered uncertainty set, it is possible to repair the baseline solution into a new solution without changing anchored decisions. The anchor-robust approach allows for a trade-off between the cost of a solution and guaranteed decisions. Anchoring problems are formally defined and studied on two problem classes. The first one is the class of integer programs in binary variables, including classical polynomial problems such as spanning trees. The second one is project scheduling, where jobs must be scheduled under precedence only, or precedence and resource constraints. The complexity of anchoring problems is analyzed. Combinatorial properties of anchored solutions are exhibited, and dedicated algorithmic and polyhedral approaches are devised. Mixed-integer programming techniques are investigated, that highlight the practical implementability of anchoring problems.; Si les données d'un problème d'optimisation combinatoire changent, une solution initiale peut devenir sous-optimale ou infaisable. Il est alors nécessaire de calculer une nouvelle solution, mais aussi souhaitable de maintenir les décisions prises dans la solution initiale. Dans cette thèse nous proposons le critère d'ancrage pour favoriser les décisions inchangées entre solutions. En réoptimisation, il s'agit de trouver une solution conservant un nombre maximal de décisions d'une solution initiale. En optimisation robuste à deux étapes, nous proposons l'approche robuste-ancrée, qui consiste à calculer en avance une solution baseline et un sous-ensemble de décisions dites ancrées. Pour toute réalisation des données dans l'ensemble d'incertitude considéré, on peut réparer la solution baseline en une nouvelle solution sans changer les décisions ancrées. Cette approche permet un compromis entre le coût de la solution et les garanties sur les décisions. Les problèmes d'ancrage sont formalisés et déclinés sur deux classes de problèmes. La première est celle des programmes linéaires en variables binaires, et notamment des problèmes polynomiaux classiques comme l'arbre couvrant. La deuxième est celle des problèmes d'ordonnancement de projet, où des tâches doivent être ordonnancées sous des contraintes de précédences ou de ressources. La complexité algorithmique des problèmes d'ancrage est analysée. Les propriétés combinatoires des solutions ancrées sont étudiées, et permettent la conception d'approches algorithmiques et polyédrales dédiées. Des techniques de programmation linéaire en nombres entiers sont mises en œuvre, démontrant l'implémentabilité des problèmes d'ancrage. |