VORONOI COMPLEXES IN HIGHER DIMENSIONS, COHOMOLOGY OF $GL_N (Z)$ FOR $N\ge 8$ AND THE TRIVIALITY OF $K_8 (Z)$

Autor: Dutour Sikiric, Mathieu, Elbaz-Vincent, Philippe, Kupers, Alexander, Martinet, Jacques
Přispěvatelé: Rudjer Boskovic Institute [Zagreb], Institut Fourier (IF ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Department of Mathematics [Cambridge] (HARVARD), Harvard University [Cambridge], Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), ANR-15-IDEX-0002,UGA,IDEX UGA(2015), Rudjer Boskovic Institute, Institut Fourier (IF), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), ANR-15-IDEX-02,CYBER@ALPS,Grenoble Alpes Cybersecurity Institute(2017)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Popis: We enumerate the low dimensional cells in the Voronoi cell complexes attached to the modular groups $SL_N (Z)$ and $GL_N (Z)$ for $N = 8, 9, 10, 11$, using quotient sublattices techniques for $N = 8, 9$ and linear programming methods for higher dimensions. These enumerations allow us to compute some cohomology of these groups and prove that $K_8 (Z) = 0$, providing new knowledge on the Kummer-Vandiver conjecture.
Databáze: OpenAIRE