The UOB-Telecom ParisTech Arabic Handwriting Recognition and Translation Systems for the OpenHart 2013 Competition
Autor: | Morillot, Olivier, Oprean, Cristina, Likforman-Sulem, Laurence, Mokbel, Chafic, Chammas, Edgar, Grosicki, Emmanuèle |
---|---|
Přispěvatelé: | Oprean, Cristina, Laboratoire Traitement et Communication de l'Information (LTCI), Télécom ParisTech-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS), University of Balamand - UOB (LIBAN), CEP Arcueil (DGA/CTA/DT/GIP), Délégation Générale pour l'Armement |
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
[INFO.INFO-TT]Computer Science [cs]/Document and Text Processing
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] [INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV] [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ComputingMethodologies_DOCUMENTANDTEXTPROCESSING [INFO.INFO-TT] Computer Science [cs]/Document and Text Processing [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] |
Zdroj: | OpenHaRT 2013 Workshop Proceedings 12th International Conference on Document Analysis and Recognition (ICDAR), 2013 12th International Conference on Document Analysis and Recognition (ICDAR), 2013, Aug 2013, Washington DC, United States. pp.NIST |
Popis: | International audience; This article is a description of the two systems proposed for the recognition of Arabic handwritten text lines and for the automatic translation of text-line and sentence images into English text. The recognition systems are based on HMMs (Hidden Markov Models) and BLSTMs (bi-directional long short term memory) recurrent networks. Two SMT (Statistical Machine Translation) systems based on MOSES [1] were built for the evaluation system: one on text-line translation and one for sentence translation. |
Databáze: | OpenAIRE |
Externí odkaz: |