Study of epidemic waves in a SEIR model
Autor: | Feu Basilio, Teresa |
---|---|
Přispěvatelé: | Huguet Casades, Gemma, Lázaro Ochoa, José Tomás, Universitat Politècnica de Catalunya. Departament de Matemàtiques |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Differential equations
Ordinary Differential Equations Epidemiology COVID19 Dynamical systems 34 Ordinary differential equations [Classificació AMS] Equacions diferencials ordinàries SEIR model Matemàtiques i estadística::Equacions diferencials i integrals::Equacions diferencials ordinàries [Àrees temàtiques de la UPC] |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
Popis: | Many infectious diseases like the Spanish flu (1918-1919) or currently SARS-CoV-2, also known as COVID19, exhibit a certain wave-like behaviour. An epidemic wave can be defined as the time-distance between two consecutive peaks of infectious population. In many cases there is a seasonal reason for a wave-like behaviour. In others, like in COVID19, this is not so clear and it could be related to several circumstances such as mobility restrictions imposed by governments, general lockdown, social contact constraints, school year, holidays... The goal of this Bachelor's degree thesis is to study epidemic waves from a dynamical systems approach, considering a simple SEIR model. We start by exploring theoretical results associated to a simple SEIR model as the basic reproduction number, Hethcote's theorem or variational equations. Then, we study how the SEIR parameter infection rate can lead to epidemic waves. Finally, we propose an original numerical method to apply our simple SEIR model to Catalonia's data. This method helps us analyse the importance of restrictions and to examine how small variations in the infection rate can lead to higher or smaller epidemic waves. |
Databáze: | OpenAIRE |
Externí odkaz: |