An Improved Clustering Algorithm for Text Mining: Multi-Cluster Spherical K-Means

Autor: Volkan Tunalı, Bilgin, T., Camurcu, A.
Přispěvatelé: Maltepe Üniversitesi
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Scopus-Elsevier
Popis: WOS: 000367763900002
Thanks to advances in information and communication technologies, there is a prominent increase in the amount of information produced specifically in the form of text documents. In order to, effectively deal with this "information explosion" problem and utilize the huge amount of text databases, efficient and scalable tools and techniques are indispensable. In this study, text clustering which is one of the most important techniques of text mining that aims at extracting useful information by processing data in textual form is addressed. An improved variant of spherical K-Means (SKM) algorithm named multi-cluster SKM is developed for clustering high dimensional document collections with high performance and efficiency. Experiments were performed on several document data sets and it is shown that the new algorithm provides significant increase in clustering quality without causing considerable difference in CPU time usage when compared to SKM algorithm.
Databáze: OpenAIRE