Mapping urban impervious surfaces from an airborne hyperspectral imagery using the object- oriented classification approach

Autor: Aguejdad, Rahim, Serradj, Aziz, Weber, Christiane
Přispěvatelé: Littoral, Environnement, Télédétection, Géomatique (LETG - Rennes), Littoral, Environnement, Télédétection, Géomatique UMR 6554 (LETG), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-Université d'Angers (UA)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Brest (UBO)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Géographie et d'Aménagement Régional de l'Université de Nantes (IGARUN), Université de Nantes (UN)-Université de Nantes (UN)-Université de Caen Normandie (UNICAEN), Université de Nantes (UN)-Université de Nantes (UN), Image et ville (IV), Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS), Laboratoire Image, Ville, Environnement [Strasbourg] (LIVE), Université de Strasbourg (UNISTRA), Weber, Christiane
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: MATEC Web of Conferences
International Conference on Advances in Sustainable Construction Materials & Civil Engineering Systems (ASCMCES-17)
International Conference on Advances in Sustainable Construction Materials & Civil Engineering Systems (ASCMCES-17), 2017, SHARJAH, Saudi Arabia
Popis: International audience; The objective of this research is to explore the capabilities of the hyperspectral imagery in mapping the urban impervious objects and identifying the surface materials using an object-oriented approach. The application is conducted to Toulouse city (France) within the HYEP research project in charge of using hyperspectral imagery for the environmental urban planning. The method uses the multi-resolution segmentation and classification algorithms. The first results highlight a high potential of the hyperspectral imagery in land cover mapping of the urban environment, especially the extraction of impervious surfaces. They, also, illustrate, that the object-oriented approach by means of the fuzzy logic classifier yields promising results in distinguishing the mean roofing materials based only on the spectral information. Conversely to the red clay tiles and metal roofs, which are easily identified, the concrete, gravel and asphalt roofs are still confused with roads.
Databáze: OpenAIRE