Simulation Modeling of Cloud Cover Projection Movement over the Plane of Solar Power Station

Autor: Kutschaenko, Ie. R., Klen, Kateryna Serhiivna
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Mìkrosistemi, Elektronìka ta Akustika, Vol 23, Iss 6 (2018)
Microsystems, Electronics and Acoustics; Том 23, № 6 (2018); 42-47
Микросистемы, Электроника и Акустика; Том 23, № 6 (2018); 42-47
Мікросистеми, Електроніка та Акустика; Том 23, № 6 (2018); 42-47
ISSN: 2523-4455
2523-4447
Popis: В статті наведені результати імітаційного моделювання роботи елемента сонячної електростанції у програмному середовищі MATLAB® Simulink® за умови руху проекції хмарного покриву над площиною елементу. Затінення сонячної панелі проекцією хмари представляється дискретною зміною величини інтенсивності сонячного випромінювання на окремих фотоелементах за допомогою блоків Repeating Sequence Stair. Представлено модель елементу сонячної електростанції. Наведено часові залежності напруги на виході окремих стійок сонячної панелі, напруги на навантаженні та струму акумуляторної батареї.Бібл. 9, рис. 4.
В статье приведены результаты имитационного моделирования работы элемента солнечной электростанции в программной среде MATLAB® Simulink® при движении проекции облачного покрова над плоскостью элемента. Затенение солнечной панели проекцией облака представляется дискретным изменением величины интенсивности солнечного излучения на отдельных фотоэлементах с помощью блоков Repeating Sequence Stair. Представлена модель элемента солнечной электростанции. Приведены временные зависимости напряжения на выходе отдельных стоек солнечной панели, напряжения на нагрузке и тока аккумуляторной батареи.Библ. 9, рис. 4.
In the presented article results of imitation modeling of the solar power station element in the MATLAB® Simulink® software environment are presented. The modeling was provided taking in account the motion of the projection of the cloud cover over the plane of the element. Maximum level of energy that can be obtained from solar power station is determined by the intensity of the solar radiation, the total area of solar panels and their coefficient of efficiency. Regardless of the ratio of the size of the solar power station and cloud, it is necessary to develop a solar cell model, the analysis of the results of which would allow estimating the dependence of power at the output of the power station on the magnitude of the intensity of the solar radiation and the vector of clouds the projections movement. Given the limited computing power of an existing computer, the simulation is carried out on an example of individual photocells as components of the solar panel. The model of the solar power station element is developed using the main elements of the Simulink graphical environment, SimElectronics and Simscape libraries, as well as programming elements. In the model, the fundamental element is the Solar Cell, simulating the work of the solar panel, which consists of 16 photocells. The scheme of solar panel model with possible directions of cloud cover projection movement is given. The impact of cloud cover on the solar panel output power is determined by change in the intensity of solar radiation at certain intervals for each photocell. To simplify the simulation, it is assumed that the cloud boundaries are clearly defined. The shadowing of the solar panel by the projection of the cloud is presented by discrete change in the magnitude of the intensity of solar radiation on individual photocells with the help of Repeating Sequence Stairs block. The imitation model for the movement vector of cloud projection and its setting parameters are given. The model of the solar power station element with the change the vector of cloud cover projection movement, in which the stabilization of the load voltage at the level of 10 V is presented. Maintenance of the necessary load voltage level on time intervals when the power of the solar power station is insufficient, is ensured by the inclusion of the storage battery into the system. In the case when the speed of cloud cover projection movement reaches several m/s, the photocell in the proposed model corresponds to a block of 16 solar panels, and a solar panel rack corresponds to 64 solar panels. Time dependencies of the voltage at the output of the individual racks of the solar panel, the load voltage and the battery current are given.Re. 9, fig. 4
Databáze: OpenAIRE