Collatz conjecture Demonstration of the relationship between the numbers of even and odd steps before reaching 1, and the initial odd value of a Collatz sequence that converges
Autor: | Baleh, Farid |
---|---|
Přispěvatelé: | Baleh, Farid, Auteur indépendant |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | In press |
Popis: | International audience; The relationship between the numbers of even steps (P), the number of odd steps (I) and the odd initial value u0 of a compressed Collatz sequence that converges is as follows:I+P= E[log2((3^I)*u0)]+1Where:E(x) is the integer part of the real number x;log2(x) is the base two logarithm of the real number x;E[log2(u0)] is the exponent of the biggest power of 2 that is strictly less than the odd natural number u_0;I+P is the total stopping time of the compressed sequence. |
Databáze: | OpenAIRE |
Externí odkaz: |