Optimal Efficiency Control of Synchronous Reluctance Motors-based ANN Considering Cross Magnetic Saturation and Iron Loss
Autor: | Truong, Phuoc Hoa, Flieller, Damien, Nguyen, Ngac Ky, Merckle, Jean |
---|---|
Přispěvatelé: | Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 (L2EP), Centrale Lille-Haute Etude d'Ingénieurs-Université de Lille-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Modélisation, Intelligence, Processus et Système (MIPS), Ecole Nationale Supérieure d'Ingénieur Sud Alsace-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-IUT de Colmar-IUT de Mulhouse, Centrale Lille-Université de Lille-Arts et Métiers Sciences et Technologies, HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA)) |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | IECON 2015 Conférence IECON 2015 (41st Annual Conference of the IEEE Industrial Electronics Society) Conférence IECON 2015 (41st Annual Conference of the IEEE Industrial Electronics Society), Nov 2015, Yokohama, Japan. pp.6 |
Popis: | This paper presents a new idea by using the Artificial Neural Networks (ANNs) for estimating the parameters of the machine which achieving the maximum efficiency of the Synchronous Reluctance Motor (SynRM). This model take into consideration the magnetic saturation, cross-coupling and iron loss. With Finite Element Analysis (FEA), the characteristics of the SynRM including inductances and iron loss resistance are determined. Because of the non-linear characteristics, an ANN trained off-line, is then proposed to obtain the d-q inductances and iron loss resistance from Id,Iq currents and the speed. After learning process, an analytical expression of the optimal currents is given thanks to Lagrange optimization. Therefore, the optimal currents will be obtained online in real time. This method can be achieved with maximum efficiency and high-precision torque control. Simulation and experimental results are presented to confirm the validity of the proposed method. |
Databáze: | OpenAIRE |
Externí odkaz: |