Thermographic and tomographic methods for three-dimensional characterization of thermal diffusion in silica/phenolic composites
Autor: | AHMADI-SÉNICHAULT, Azita, Vignoles, Gérard, BRESSON, Grégory, Caty, Olivier, AYVAZYAN, Viguen, Gregori, M. L., Costa, S. |
---|---|
Přispěvatelé: | Institut de Mécanique et d'Ingénierie de Bordeaux (I2M), Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB)-École Nationale Supérieure d'Arts et Métiers (ENSAM), Arts et Métiers Sciences et Technologies, HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Composites Thermostructuraux (LCTS), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Snecma-SAFRAN group-Centre National de la Recherche Scientifique (CNRS), Instituto Tecnológico de Aeronáutica [São José dos Campos] (ITA), École Nationale Supérieure d'Arts et Métiers (ENSAM), HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Institut National de la Recherche Agronomique (INRA), HESAM Université (HESAM)-HESAM Université (HESAM)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Snecma-SAFRAN group-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: |
Matériaux [Sciences de l'ingénieur]
Mécanique: Thermique [Sciences de l'ingénieur] Thermographic methods [SPI.MECA.THER]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph] composite characterization Silica/phenolic composites X-ray tomography Thermal diffusion [SPI.MAT]Engineering Sciences [physics]/Materials |
Popis: | International audience; Aeronautical and space vehicles include many parts made of composite materials. The thermal design of these materials is critical versus their application. Indeed, the presence of very high thermal gradients during use may cause many technological problems such as resistance to thermal shocks or ablation. Furthermore, certain manufacturing processes call upon very high thermal gradients. Hence, the knowledge and control of the evolution of thermal properties during manufacturing and use is essential.In this work the development of a dual approach for thermal characterization of composite materials is presented. The first method makes use of standard and specific experimental methods, while the second is based on upscaling tools. In the second, 2D microscopic and 3D tomographic images are used in a two-step upscaling process using the Volume Averaging Method with closure: microscopic scale to mesoscopic scale to macroscopic scale. The procedure starts from the knowledge of the properties of the elementary constituents (matrix and fibers) and their spatial arrangement. The method can also be applied to virtually generated images of composite materials and can therefore contribute to the creation of a “design tool” that can allow the prediction of the influence of the architecture of the fiber reinforcement on certain properties of the composites namely the heat conductivity tensor. The two approaches are applied to two silica/phenolic composites with different spatial organizations. These composites are often used in thermal protection systems for atmospheric re-entry. Numerical results arecompared to experimental ones in terms of transverse and longitudinal thermal conductivities of the composites, and are found to be in good agreement. A discussion is made on the different possible sources of uncertainty for both methods. |
Databáze: | OpenAIRE |
Externí odkaz: |