Efficient OLAP Operations for RDF Analytics

Autor: Akbari Azirani, Elham, Goasdoué, François, Manolescu, Ioana, Roatis, Alexandra
Přispěvatelé: Database optimizations and architectures for complex large data (OAK), Laboratoire de Recherche en Informatique (LRI), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), OAK team, Inria Saclay, INRIA
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: [Research Report] RR-8668, OAK team, Inria Saclay; INRIA. 2015
Popis: RDF is the leading data model for the Semantic Web, and dedicated query languages such as SPARQL 1.1, featuring in particular aggregation, allow extracting information from RDF graphs. A framework for analytical processing of RDF data was introduced in [1], where analytical schemas and analytical queries (cubes) are fully re-designed for heterogeneous, semantic-rich RDF graphs. In this novel analytical setting, we consider the following optimization problem: how to reuse the materialized result of a given analytical query (cube) in order to compute the answer to another analytical query obtained through a typical OLAP operation. We provide view-based rewriting algorithms for these query transformations, and demonstrate experimentally their practical interest.
Databáze: OpenAIRE