Punctured combinatorial Nullstellensätze

Autor: Ball, Simeon Michael|||0000-0003-4845-2084, Serra Albó, Oriol|||0000-0001-8561-4631
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
Jazyk: angličtina
Rok vydání: 2007
Předmět:
Zdroj: Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Popis: In this article we present a punctured version of Alon's Nullstellensatz which states that if $f$ vanishes at nearly all, but not all, of the common zeros of some polynomials $g_1(X_1),\ldots,g_n(X_n)$ then every $I$-residue of $f$, where the ideal $I=\langle g_1,\ldots,g_n\rangle$, has a large degree. Furthermore, we extend Alon's Nullstellensatz to functions which have multiple zeros at the common zeros of $g_1,g_2,\ldots,g_n$ and prove a punctured version of this generalised version. Some applications of these punctured Nullstellens\"atze to projective and affine geometries over an arbitrary field are considered which, in the case that the field is finite, will lead to some bounds related to linear codes containing the all one vector.
Databáze: OpenAIRE