A Note on α-Drawable k-Trees

Autor: Bremner, D., Lenchner, J., Liotta, G., Christophe Paul, Pouget, M., Stolpner, S., Wismath, S.
Přispěvatelé: Faculty of Computer Science, University of New Brunswick (UNB), IBM Watson Research Center, IBM, School of Computing, Università degli Studi di Perugia = University of Perugia (UNIPG), Algorithmes, Graphes et Combinatoire (ALGCO), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Effective Geometric Algorithms for Surfaces and Visibility (VEGAS), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics and Computer Science, University of Lethbridge, Università degli Studi di Perugia (UNIPG), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Jazyk: angličtina
Rok vydání: 2008
Předmět:
Zdroj: CCCG 2008-20th Annual Canadian Conference on Computational Geometry
CCCG 2008-20th Annual Canadian Conference on Computational Geometry, Aug 2008, Montréal, Québec, Canada. pp.23-26
CCCG'08: Canadian Conference on Computational Geometry
CCCG'08: Canadian Conference on Computational Geometry, Canada. pp.23-27
Scopus-Elsevier
Popis: URL des proceedings: http://www.cccg.ca/proceedings/2008/; International audience; We study the problem of realizing a given graph as an $\alpha$-complex of a set of points in the plane. We study the realizability problem for trees and $2$-trees. In the case of $2$-trees, we confine our attention to the realizability of graphs as the $\alpha$-complex minus faces of dimension two; in other words, realizability of the graph in terms of the $1$-skeleton of the $\alpha$-complex of the point set. We obtain both positive (realizability) and negative (non-realizability) results.
Databáze: OpenAIRE