Some recent applications of radio occultationtechnique in atmospheric proceses
Autor: | de la Torre, Alejandro, Alexander, Pedro Manfredo, Llamedo Soria, Pablo Martin, Hierro, Rodrigo Federico, Pessano, Horacio, Odiard, Andrés |
---|---|
Jazyk: | Spanish; Castilian |
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | CONICET Digital (CONICET) Consejo Nacional de Investigaciones Científicas y Técnicas instacron:CONICET |
Popis: | En los últimos años, el uso del principio de radio ocultamiento (RO) satelital para observar la atmósfera terrestre y el clima aprovecha los ocultamientos bajo el horizonte del sol, de la luna, de las estrellas y principalmente de satélites artificiales de baja altura (LEO). En este último caso, se utilizan señales cruzadas entre satélites LEO y satélites de gran altura GPS. La aplicación de la técnica de RO usando transmisores del sistema de GPS en órbitas altas y receptores a bordo de satélites de baja órbita, ha provisto perfiles de refractividad atmosférica muy precisos. La idea básica de un RO es observar como las ondas de radio emitidas por los GPS se propagan en la atmósfera. La trayectoria del rayo asociado a una onda de radio entre un LEO y un satélite GPS, mientras se están ocultando mutuamente por interponerse la Tierra entre ambos, atraviesa la atmósfera desviándose debido a gradientes de refractividad. El ángulo de desviación del rayo se obtiene a partir de un cambio en el retraso de la fase (corrimiento Doppler) de la señal GPS recibida por el LEO. Suponiendo simetría esférica, la información de la desviación puede ser invertida mediante una transformación de Abel, y así obtener un perfil vertical del índice de refracción. A partir de perfiles atmosféricos verticales de refractividad y de un modelo atmosférico, se obtienen diversos parámetros indirectamente: desde temperatura (T), presión, altura geopotencial y vapor de agua, hasta especies minoritarias como aerosoles, agua líquida de las nubes y densidad electrónica ionosférica. La enorme ventaja ofrecida por la cobertura en todo el planeta, tanto sobre los territorios continentales como oceánicos, la resolución en T menor que 1 K, la estabilidad a largo plazo y fundamentalmente la ausencia de cualquier limitación impuesta por posibles condiciones climáticas, hace a la técnica de RO GPS única dentro de los diferentes sistemas de sensado remoto de la atmósfera. Hasta la actualidad ha sido obtenida y procesada una base de datos con varios cientos de miles de sondeos de este tipo, recogidos por los primeros satélites LEO y posteriores (SAC-C, CHAMP, GRACE, COSMIC, TerraSAR-X, MetOp). En el presente trabajo, se mostrarán ejemplos de resultados, a escala global y regional de la distribución de vapor de agua y de energía asociada a ondas atmosféricas, mediante datos de RO GPS. Se pondrá especial énfasis sobre las regiones montañosas de la cordillera de los Andes a latitudes medias y de la península antártica, para lo cual se analizarán individualmente eventos de RO de interés, a partir de las excepcionales características observables de OIG en dicha región. Dicho análisis será complementado con simulaciones numéricas con el modelo de mesoescala WRF, versión 3.2. y con perfiles de T de RO disponibles en las regiones de interés. En particular, se mostrará: i) la distribución espacial de ondas internas de gravedad (OIG) estacionarias, ii) su propagación en las atmósferas baja y media y iii) la posible importancia relativa de las ondas de montaña como mecanismo de detonación de procesos de convección profunda con generación de granizo. In the last years, the use of radio occultation (RO) technique to observe the terrestrial atmosphere and the climate takes advantage of the occultation of the Sun, the Moon, the stars and principally of artificial satellites of low height (LEO). In the latter case, crossed signs between LEO and GPS satellites are used. The application of RO's technology using transmitters of the GPS system in high orbits and recipients on board of low orbit satellites, has provided profiles of atmospheric refractivity very precise. The basic idea of a RO is to observe how waves emitted by a GPS are propagated in the atmosphere. The ray trajectory associated to a radio wave between a GPS and a LEO, while these are hiding themselves mutually due to the interposition of the Earth, is deviated due to refractivity gradients. The ray bending angle is obtained from a change in the phase (Doppler shift) of the signal received by the LEO. Assuming spherical symmetry, the deviation information may be inverted by an Abel transformation to obtain a vertical profile of the index of refraction. From atmospheric profiles of refractivity and an atmospheric model, several parameters are obtained: from temperature (T), pressure, geopotential height and water vapor to minor species as aerosols, cloud liquid water and ionospheric electron density. The enormous advantage offered by the coverage in the whole planet, above the continental and oceanic territories, the 1K T resolution, the long term stability and mainly the absence of any restriction imposed by climatic conditions, makes the GPS RO technique unique among different remote sensing atmospheric systems. Up to now, hundreds of thousands of soundings have been processed, from the first satellites to recent (SAC-C, CHAMP, GRACE, COSMIC, TerraSAR-X, MetOp). In the present work, examples of global and regional water vapor and atmospheric wave energy distributions will be shown. It will be put on special emphasis on the mountainous regions of the Andes Range at middle latitudes and the Antarctic Peninsula and case studies will be analyzed. This analysis will be complemented by WRF model simulations and with measured T profiles in the regions of interest. In particular it will be shown: i) the spatial distribution of stationary gravity waves, ii) their propagation in the lower and middle atmospheres, and iii) the possible relevance of mountain waves as a triggering mechanism of seep convection processes with hail production. Key words: satellite radio occultation, gravity waves. Fil: de la Torre, Alejandro. Universidad Austral. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Provincia de Mendoza. Subsecretaría de Agricultura; Argentina Fil: Alexander, Pedro Manfredo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Llamedo Soria, Pablo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería; Argentina Fil: Hierro, Rodrigo Federico. Universidad Austral. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Pessano, Horacio. Provincia de Mendoza. Subsecretaría de Agricultura; Argentina. Universidad Tecnologica Nacional; Argentina Fil: Odiard, Andrés. Provincia de Mendoza. Subsecretaría de Agricultura; Argentina |
Databáze: | OpenAIRE |
Externí odkaz: |