Eruptive dynamics and petrological evolution of recent volcanism on the El Hierro Island : Implications for volcanic hazard assessment
Autor: | Meletlidis Tsiogalos, Stavros |
---|---|
Přispěvatelé: | Martí i Molist, Joan, 1957, Universitat de Barcelona. Departament de Geodinàmica i Geofísica, Vilaplana, Joan Manuel |
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Dipòsit Digital de la UB Universidad de Barcelona TDX (Tesis Doctorals en Xarxa) TDR. Tesis Doctorales en Red instname |
Popis: | [eng] The Canarian archipelago, extends over approximately 500 km in total along the passive continental margin off NW Africa, comprises seven major and four minor islands, and it is part of the so called Macaronesia region, together with the archipelagos of Azores, Madeira, Salvajes and Cape Verde. Within the oceanic geodynamic context, the Canary archipelago is located on oceanic crust of the big African plate, specifically upon the passive continental margin, with thickness exceeding 20 km. It is a good example of oceanic intraplate alkaline volcanism. According the radioisotopic data available (Carracedo et al., 1998) the archipelago has been formed during the last 60 Ma and is still volcanically active. Multiple periods of volcanic activity accompanied with extreme range in magma compositions and eruptive styles have been exhibited during the evolution. A wide variety of models have been proposed for the origin of the Canary Islands, such as, hot spot, decompressing fusion, Atlas generated propagating fracture, or the "block" model based on regional fractures that helped elevate the islands. Holocene sub-aerial activity has occurred on all islands, except La Gomera, with 18 eruptions in the last 520 years (historic activity) on Tenerife, La Palma, Lanzarote and El Hierro. All these eruptive events consist of monogenetic basaltic eruptions along structures or zones identified as rifts (only the 1798 of Montaña Chahorra in Tenerife, expulsed intermediate composition magma and was located at the base of the Teide-Pico Viejo volcanic complex). Although monogenetic volcanism is the most extended type of volcanic activity on the planet (Walker 2000) and is characterized by a large diversity of eruptive styles and products, it is generally associated to low level volcanic hazard and many times it is underestimated in the hazard assessment. The main structures generated by these type of eruptions (concentrated as volcanic fields or long rift zones) are cinder cones, formed by the pyroclastic products and lava flows, that can reach several kilometres length. Eventually, can generate phreatomagmatic deposits, when an interaction between magma and water occurs (shallow submarine volcanism or littoral cones). These eruptions, traditionally, are associated with a single batch and pulse of magma and are greatly influenced by local and regional stress fields. Other parameters that can be important in the evolution of the activity, as in any other volcanic activity, are magma composition, volume, and rheological contrast beneath the surface. Recent studies have revealed that, even in a monogenetic eruption, an internal geochemical evolution could be possible, mainly because of the multiple batches involved and the importance of the local stress controls in the migration and finally eruption of magma. Complexity, derived from these internal and external conditions in combination with the depth where magmas are stored and transported, is reflected in the difficulty to anticipate and forecast these types of eruptions and their evolution, especially, for areas with long quiescent periods and a variety of magmas as in the Canary Islands, where a new volcano could come up in any location. The reconstruction of the structure, geometry, composition and plumbing system conditions of pre- existed monogenetic eruptions on the Canary Islands along with the data obtained (petrological, seismological, geodetical, etc.) of an eruption in course such was the 2011 El Hierro eruption will help us obtain a significant progress in understanding the processes that take place, improve our knowledge on monogenetic eruptions and as a consequence enhance hazard assessment and reduce the risk to human lives. [spa] La última erupción en la isla de El Hierro (2011-12) representa una excelente oportunidad para estudiar el volcanismo monogenético basáltico. La comparación de los productos emitidos durante esa erupción con los emitidos en erupciones anteriores y la interpretación de los resultados petrológicos junto con los datos obtenidos por la red multiparamétrica de vigilancia volcánica del IGN de vigilancia (estaciones sísmicas, GNSS, gravimétricas,…) nos ha permitido lograr un conocimiento integral de los procesos que ocurren antes y durante este tipo de erupciones basáticas monogenéticas, que son las más probables a corto y medio plazo en Canarias. Este enfoque multidisciplinar nos ha proporcionado nueva información sobre el ascenso del magma, las condiciones y procesos internos, los mecanismos de las erupciones basálticas, los mecanismos de deposición y los escenarios de interacción. La interpretación conjunta de todos los datos obtenidos permitirá una mejor evaluación del riesgo volcánico, no solo para la isla de El Hierro, sino para todo el archipiélago canario. En esta tesis, junto con el estudio de la erupción de 2011-12, se han estudiado dos más erupciones; la que ha dado el depósito de productos evolucionados en el centro de la isla (área del Malpaso) donde la dinámica y evolución de ella se ha ligado en la interacción magma/agua y la erupción de Chinyero (1909, Tenerife) que con rasgos similares a la de El Hierro (basáltica) pero con menor volumen de magma involucrado, ha tenido una dinámica más explosiva de lo que se había creído hasta hoy. Por lo tanto, las evaluaciones de riesgo volcánico a largo y corto plazo para el conjunto de las islas Canarias deben tener en cuenta posibles escenarios que no solo incluyen la erupciones basálticas submarinas, como es el caso de 2011-2012, sino también las erupciones sub-aéreas de corta vida como la del Chinyero o las erupciones como la del Malpaso, donde la intrusión basáltica y la interacción con el agua son procesos que aumentan la explosividad de una erupción y como consecuencia, al área afectado de sus productos. |
Databáze: | OpenAIRE |
Externí odkaz: |